diff --git a/src/madness/chem/lowrankfunction.h b/src/madness/chem/lowrankfunction.h index 8486d04352b..c529d1e9ecd 100644 --- a/src/madness/chem/lowrankfunction.h +++ b/src/madness/chem/lowrankfunction.h @@ -503,17 +503,9 @@ namespace madness { } -// } else if (gridtype=="cartesian") { -// long nperdim=std::lround(std::pow(double(rank),1.0/3.0)); -// cartesian_grid cg(nperdim,-radius,radius); -// for (cg.index=0; cg(); ++cg) grid.push_back(cg.get_coordinates()); -// if (world.rank()==0 and do_print) print("volume element in cartesian grid",cg.volume_per_gridpoint()); } else if (params.gridtype()=="spherical") { cgrid cg(params.volume_element(),params.radius(),params.hard_shell()); grid=cg.get_coordinates(); -// cartesian_grid cg(volume_per_point,radius); -// for (cg.index=0; cg(); ++cg) grid.push_back(cg.get_coordinates()); -// if (world.rank()==0 and do_print) print("volume element in cartesian grid",cg.volume_per_gridpoint()); } else { MADNESS_EXCEPTION("unknown grid type in project",1); } @@ -521,36 +513,14 @@ namespace madness { auto Y=Yformer(grid,params.rhsfunctiontype()); t1.tag("Yforming"); - auto norms=norm2s(world,Y); - for (int i=0; irank_revealing_tol) g.push_back(Y[i]); - normalize(world,g); - print("g.size after normalization",g.size()); - - std::ostringstream oss; - oss << std::scientific << std::setprecision(1) << rank_revealing_tol; - std::string scientificString = oss.str(); - double err=1.0; - // need only approximate orthonormality here, as we will re-orthonormalize in the optimization step - while (err>1.e-1) { - double tight_thresh=FunctionDefaults<3>::get_thresh()*0.1; - err=check_orthonormality(g); - t1.tag("check orthonormality"); - auto ovlp=matrix_inner(world,g,g); - t1.tag("compute ovlp"); -// g=truncate(orthonormalize_rrcd(g,ovlp,rank_revealing_tol),tight_thresh); - g=truncate(orthonormalize_rrcd(g,ovlp,rank_revealing_tol)); - t1.tag("rrcd/truncate/thresh"); -// ovlp=matrix_inner(world,g,g); -// t1.tag("compute ovlp"); -// g=truncate(madness::orthonormalize(g)); -// t1.tag("ortho/symmetric/truncate"); - auto sz=get_size(world,g); - print("gsize",sz); - t1.tag("Y orthonormalizing rrcd "); - err=check_orthonormality(g); - t1.tag("Y orthonormalizing with rank_revealing_tol normal thresh "+scientificString); - } - g=truncate(g); + + auto ovlp=matrix_inner(world,Y,Y); // error in symmetric matrix_inner, use non-symmetric form here! + t1.tag("compute ovlp"); + g=truncate(orthonormalize_rrcd(Y,ovlp,rank_revealing_tol)); + t1.tag("rrcd/truncate/thresh"); + auto sz=get_size(world,g); + print("gsize",sz); + check_orthonormality(g); if (world.rank()==0 and do_print) { print("Y.size()",Y.size()); @@ -585,7 +555,12 @@ namespace madness { } else { MADNESS_EXCEPTION("confused rhsfunctiontype",1); } - return Y; + auto norms=norm2s(world,Y); + std::vector> Ynormalized; + + for (int i=0; irank_revealing_tol) Ynormalized.push_back(Y[i]); + normalize(world,Ynormalized); + return Ynormalized; } long rank() const {return g.size();} @@ -600,12 +575,19 @@ namespace madness { std::vector> orthonormalize(const std::vector>& g) const { double tol=rank_revealing_tol; - print("orthonormalizing with method/tol",orthomethod,tol); std::vector> g2; auto ovlp=matrix_inner(world,g,g); - if (orthomethod=="symmetric") g2=orthonormalize_symmetric(g,ovlp); - else if (orthomethod=="canonical") g2=orthonormalize_canonical(g,ovlp,tol); - else if (orthomethod=="cholesky") g2=orthonormalize_rrcd(g,ovlp,tol); + if (orthomethod=="symmetric") { + print("orthonormalizing with method/tol",orthomethod,tol); + g2=orthonormalize_symmetric(g,ovlp); + } else if (orthomethod=="canonical") { + tol*=0.01; + print("orthonormalizing with method/tol",orthomethod,tol); + g2=orthonormalize_canonical(g,ovlp,tol); + } else if (orthomethod=="cholesky") { + print("orthonormalizing with method/tol",orthomethod,tol); + g2=orthonormalize_rrcd(g,ovlp,tol); + } else { MADNESS_EXCEPTION("no such orthomethod",1); } @@ -620,35 +602,117 @@ namespace madness { void optimize(const long nopt=1) { timer t(world); t.do_print=do_print; - double tight_thresh=FunctionDefaults<3>::get_thresh(); - print("tight_thresh",tight_thresh); for (int i=0; i ovlp_g = matrix_inner(world, g, g); + Tensor ovlp_h = matrix_inner(world, h, h); + auto [eval_g, evec_g] = syev(ovlp_g); + auto [eval_h, evec_h] = syev(ovlp_h); + Tensor Xplus=copy(evec_g); + Tensor Xminus=copy(evec_g); + Tensor Yplus=copy(evec_h); + Tensor Yminus=copy(evec_h); +// print("eval_g",eval_g); +// print("eval_h",eval_h); + for (int i=0; i M=madness::inner(Xplus,Yplus,0,0); // (X+)^T Y+ + auto [U,s,VT]=svd(M); +// print("s",s); + + // truncate + typename Tensor::scalar_type s_accumulated=0.0; + int i=s.size()-1; + for (;i>=0; i--) { + s_accumulated+=s[i]; + if (s_accumulated>thresh) { + i++; + break; + } + } + print("accumulated s",s_accumulated,thresh,s.size(),i); + for (int j=0; j XX=madness::inner(Xminus,U,1,0); + Tensor YY=madness::inner(Yminus,VT,1,1); + + g=truncate(transform(world,g,XX)); + h=truncate(transform(world,h,YY)); +// { +// auto one=matrix_inner(world,g,g); +// check_orthonormality(one); +// } +// { +// auto one=matrix_inner(world,h,h); +// check_orthonormality(one); +// } + + + + } + + double check_orthonormality(const std::vector>& v) const { - timer t(world); Tensor ovlp=matrix_inner(world,v,v); - for (int i=0; i& ovlp) const { + timer t(world); + Tensor ovlp2=ovlp; + for (int i=0; i i_gk = inner(world, phi, gk); double result_left = j_hj.trace(i_gk); print("result_left, optimize", result_left); + print("left optimize rank",fi_one.rank()); j["left_optimize"]=result_left-reference; j["left_optimize_rank"]=fi_one.rank(); j["left_optimize_compute_time"]=t.tag("left_optimize_compute_time"); } json2file(j,jsonfilename); + + fi_one.reorthonormalize(); + j["left_reorthonormalize"]=t.tag("left_reorthonormalize"); + print("left reorthonormalize rank",fi_one.rank()); + { + auto gk = mul(world, phi_k, g12(fi_one.g * phi_k)); // function of 1 + auto hj = fi_one.h * phi; // function of 2 + Tensor j_hj = inner(world, phi, hj); + Tensor i_gk = inner(world, phi, gk); + double result_left = j_hj.trace(i_gk); + print("result_left, reorthonormalize", result_left); + j["left_project"]=result_left-reference; + j["left_project_rank"]=fi_one.rank(); + j["left_project_compute_time"]=t.tag("left_project_compute_time"); + } + j["left_reorthonormalize_compute_time"]=t.tag("left_reorthonormalize_compute_time"); } // lowrankfunction right phi: lrf(1',2) = f12(1',2) i(1') diff --git a/src/madness/tensor/tensor_lapack.h b/src/madness/tensor/tensor_lapack.h index f446236a5b0..1215aebbb9a 100644 --- a/src/madness/tensor/tensor_lapack.h +++ b/src/madness/tensor/tensor_lapack.h @@ -60,6 +60,20 @@ namespace madness { void svd_result(Tensor& a, Tensor& U, Tensor< typename Tensor::scalar_type >& s, Tensor& VT, Tensor& work); + /// SVD - MATLAB syntax + + /// call as + /// auto [U,s,VT] = svd(A); + /// with A=U*S*VT + template + std::tuple, Tensor< typename Tensor::scalar_type >, Tensor> + svd(const Tensor& A) { + Tensor U,VT; + Tensor< typename Tensor::scalar_type > s; + svd(A,U,s,VT); + return std::make_tuple(U,s,VT); + } + /// Solves linear equations /// \ingroup linalg