You are given a binary array nums
and an integer k
.
A k-bit flip is choosing a subarray of length k
from nums
and simultaneously changing every 0
in the subarray to 1
, and every 1
in the subarray to 0
.
Return the minimum number of k-bit flips required so that there is no 0
in the array. If it is not possible, return -1
.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [0,1,0], k = 1 Output: 2 Explanation: Flip nums[0], then flip nums[2].
Example 2:
Input: nums = [1,1,0], k = 2 Output: -1 Explanation: No matter how we flip subarrays of size 2, we cannot make the array become [1,1,1].
Example 3:
Input: nums = [0,0,0,1,0,1,1,0], k = 3 Output: 3 Explanation: Flip nums[0],nums[1],nums[2]: nums becomes [1,1,1,1,0,1,1,0] Flip nums[4],nums[5],nums[6]: nums becomes [1,1,1,1,1,0,0,0] Flip nums[5],nums[6],nums[7]: nums becomes [1,1,1,1,1,1,1,1]
Constraints:
1 <= nums.length <= 105
1 <= k <= nums.length
Companies:
Google, Amazon, Adobe
Related Topics:
Array, Bit Manipulation, Sliding Window, Prefix Sum
Similar Questions:
// OJ: https://leetcode.com/problems/minimum-number-of-k-consecutive-bit-flips/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(K)
class Solution {
public:
int minKBitFlips(vector<int>& A, int k) {
queue<int> q;
int ans = 0;
for (int i = 0, N = A.size(); i < N; ++i) {
if (q.size() && q.front() <= i) q.pop();
int flip = q.size() % 2;
if ((A[i] ^ flip) == 0) {
if (i + k > N) return -1;
++ans;
q.push(i + k);
}
}
return ans;
}
};