Given an integer array arr
, and an integer target
, return the number of tuples i, j, k
such that i < j < k
and arr[i] + arr[j] + arr[k] == target
.
As the answer can be very large, return it modulo 109 + 7
.
Example 1:
Input: arr = [1,1,2,2,3,3,4,4,5,5], target = 8 Output: 20 Explanation: Enumerating by the values (arr[i], arr[j], arr[k]): (1, 2, 5) occurs 8 times; (1, 3, 4) occurs 8 times; (2, 2, 4) occurs 2 times; (2, 3, 3) occurs 2 times.
Example 2:
Input: arr = [1,1,2,2,2,2], target = 5 Output: 12 Explanation: arr[i] = 1, arr[j] = arr[k] = 2 occurs 12 times: We choose one 1 from [1,1] in 2 ways, and two 2s from [2,2,2,2] in 6 ways.
Constraints:
3 <= arr.length <= 3000
0 <= arr[i] <= 100
0 <= target <= 300
Companies:
Quora
Related Topics:
Array, Hash Table, Two Pointers, Sorting, Counting
// OJ: https://leetcode.com/problems/3sum-with-multiplicity/solution/
// Author: github.com/lzl124631x
// Time: O(N^2)
// Space: O(N)
class Solution {
public:
int threeSumMulti(vector<int>& A, int target) {
unordered_map<int, long> m;
long ans = 0, mod = 1e9 + 7;
for (int n : A) m[n]++;
for (auto &[a, ca] : m) {
for (auto &[b, cb] : m) {
int c = target - a - b;
if (m.count(c) == 0) continue;
int cc = m[c];
if (a == b && b == c) ans += ca * (ca - 1) * (ca - 2) / 6; // all three are equal
else if (a == b && b != c) ans += ca * (ca - 1) / 2 * cc; // first two are equal and the 3rd is not
else if (a < b && b < c) ans += ca * cb * cc; // all three are not equal
}
}
return ans % mod;
}
};
Or
// OJ: https://leetcode.com/problems/3sum-with-multiplicity/
// Author: github.com/lzl124631x
// Time: O(N^2)
// Space: O(N)
class Solution {
public:
int threeSumMulti(vector<int>& A, int target) {
unordered_map<int, long> m;
long ans = 0, mod = 1e9 + 7;
for (int n : A) m[n]++;
for (auto &[a, ca] : m) {
for (auto &[b, cb] : m) {
int c = target - a - b;
if (a > b || b > c || m.count(c) == 0) continue;
int cc = m[c];
if (a == b && b == c) ans += ca * (ca - 1) * (ca - 2) / 6;
else if (a == b) ans += ca * (ca - 1) / 2 * cc;
else if (a == c) ans += ca * (ca - 1) / 2 * cb;
else if (b == c) ans += cb * (cb - 1) / 2 * ca;
else ans += ca * cb * cc;
}
}
return ans % mod;
}
};