Skip to content

Latest commit

 

History

History
139 lines (120 loc) · 5.47 KB

README.md

File metadata and controls

139 lines (120 loc) · 5.47 KB

Let's say a positive integer is a super-palindrome if it is a palindrome, and it is also the square of a palindrome.

Given two positive integers left and right represented as strings, return the number of super-palindromes integers in the inclusive range [left, right].

 

Example 1:

Input: left = "4", right = "1000"
Output: 4
Explanation: 4, 9, 121, and 484 are superpalindromes.
Note that 676 is not a superpalindrome: 26 * 26 = 676, but 26 is not a palindrome.

Example 2:

Input: left = "1", right = "2"
Output: 1

 

Constraints:

  • 1 <= left.length, right.length <= 18
  • left and right consist of only digits.
  • left and right cannot have leading zeros.
  • left and right represent integers in the range [1, 1018 - 1].
  • left is less than or equal to right.

Companies:
Google

Related Topics:
Math, Enumeration

Solution 1.

The basic idea was to generate palindromes in range, and test if its square root is also a palindrome. But since the palindromes in range is still a large number, we will get TLE.

Generate the square root palindrome first, then see if its square is also a palindrome in range.

// OJ: https://leetcode.com/problems/super-palindromes/
// Author: github.com/lzl124631x
// Time: O(W^(1/4)*logW)
// Space: O(logW)
class Solution {
    long getPalindrome(long half, bool odd) {
        long ans = half;
        if (odd) half /= 10;
        for (; half; half /= 10) ans = ans * 10 + half % 10;
        return ans;
    }
    bool isPalindrome(long n) {
        long tmp = n, r = 0;
        for (; tmp; tmp /= 10) r = r * 10 + tmp % 10;
        return r == n;
    }
public:
    int superpalindromesInRange(string left, string right) {
        long L = stoll(left), R = stoll(right), ans = 0;
        for (int len = 1; true; ++len) {
            for (long half = pow(10L, (len - 1) / 2), end = half * 10; half < end; ++half) {
                long pal = getPalindrome(half, len % 2), sq = pal * pal;
                if (sq < L) continue;
                if (sq > R) return ans;
                ans += isPalindrome(sq);
            }
        }
        return 0;
    }
};

Or the magic number from the official solution

// OJ: https://leetcode.com/problems/super-palindromes/
// Author: github.com/lzl124631x
// Time: O(W^(1/4)*logW)
// Space: O(logW)
// Ref: https://leetcode.com/problems/super-palindromes/solution/
typedef unsigned long long ULL;
class Solution {
private:
    bool isPalindrome(ULL n) {
        ULL r = 0, num = n;
        while (n) {
            r = r * 10 + n % 10;
            n /= 10;
        }
        return r == num;
    }
public:
    int superpalindromesInRange(string L, string R) {
        ULL i = 1, ans = 0, nl = stoull(L), nr = stoull(R), MAGIC = 100000;
        for (int k = 1; k < MAGIC; ++k) {
            string s = to_string(k);
            for (int i = s.size() - 2; i >= 0; --i) s += s[i];
            ULL n = stoull(s);
            n *= n;
            if (n > nr) break;
            if (n >= nl && isPalindrome(n)) ++ans;
        }
        for (int k = 1; k < MAGIC; ++k) {
            string s = to_string(k);
            for (int i = s.size() - 1; i >= 0; --i) s += s[i];
            ULL n = stoull(s);
            n *= n;
            if (n > nr) break;
            if (n >= nl && isPalindrome(n)) ++ans;
        }
        return ans;
    }
};

Solution 2.

// OJ: https://leetcode.com/problems/super-palindromes/
// Author: github.com/lzl124631x
// Time: O(1)
// Space: O(1)
// Ref: https://leetcode.com/problems/super-palindromes/discuss/170728/no-more-this-type-questions-for-contest!
class Solution {
public:
    int superpalindromesInRange(string L, string R) {
        vector<long long> v{
            1, 4, 9, 121, 484, 10201, 12321, 14641, 40804, 44944, 1002001, 1234321, 4008004, 100020001, 102030201, 104060401, 121242121, 123454321, 125686521, 400080004 ,404090404, 10000200001l, 10221412201l, 12102420121l, 12345654321l, 40000800004l , 1000002000001l, 1002003002001l, 1004006004001l, 1020304030201l, 1022325232201l, 1024348434201l, 1210024200121l, 1212225222121l, 1214428244121l, 1232346432321l, 1234567654321l, 4000008000004l, 4004009004004l, 100000020000001l, 100220141022001l, 102012040210201l, 102234363432201l, 121000242000121l, 121242363242121l, 123212464212321l, 123456787654321l, 400000080000004l, 10000000200000001l, 10002000300020001l, 10004000600040001l, 10020210401202001l, 10022212521222001l, 10024214841242001l, 10201020402010201l, 10203040504030201l, 10205060806050201l, 10221432623412201l, 10223454745432201l, 12100002420000121l, 12102202520220121l, 12104402820440121l, 12122232623222121l, 12124434743442121l, 12321024642012321l, 12323244744232321l, 12343456865434321l, 12345678987654321l, 40000000800000004l, 40004000900040004l
        };
        return upper_bound(v.begin(), v.end(), stoull(R)) - lower_bound(v.begin(), v.end(), stoull(L));
    }
};