You are given a network of n
nodes, labeled from 1
to n
. You are also given times
, a list of travel times as directed edges times[i] = (ui, vi, wi)
, where ui
is the source node, vi
is the target node, and wi
is the time it takes for a signal to travel from source to target.
We will send a signal from a given node k
. Return the time it takes for all the n
nodes to receive the signal. If it is impossible for all the n
nodes to receive the signal, return -1
.
Example 1:
Input: times = [[2,1,1],[2,3,1],[3,4,1]], n = 4, k = 2 Output: 2
Example 2:
Input: times = [[1,2,1]], n = 2, k = 1 Output: 1
Example 3:
Input: times = [[1,2,1]], n = 2, k = 2 Output: -1
Constraints:
1 <= k <= n <= 100
1 <= times.length <= 6000
times[i].length == 3
1 <= ui, vi <= n
ui != vi
0 <= wi <= 100
- All the pairs
(ui, vi)
are unique. (i.e., no multiple edges.)
Related Topics:
Depth-First Search, Breadth-First Search, Graph, Heap (Priority Queue), Shortest Path
Similar Questions:
// OJ: https://leetcode.com/problems/network-delay-time/
// Author: github.com/lzl124631x
// Time: O(E + VlogV)
// Space: O(E)
class Solution {
typedef pair<int, int> PII;
public:
int networkDelayTime(vector<vector<int>>& E, int n, int k) {
vector<vector<PII>> G(n);
for (auto &e : E) G[e[0] - 1].emplace_back(e[1] - 1, e[2]);
vector<int> dist(n, INT_MAX);
dist[k - 1] = 0;
priority_queue<PII, vector<PII>, greater<>> pq;
pq.emplace(0, k - 1);
while (pq.size()) {
auto [cost, u] = pq.top();
pq.pop();
if (dist[u] > cost) continue;
for (auto &[v, w] : G[u]) {
if (dist[v] > dist[u] + w) {
dist[v] = dist[u] + w;
pq.emplace(dist[v], v);
}
}
}
int ans = *max_element(begin(dist), end(dist));
return ans == INT_MAX ? -1 : ans;
}
};
// OJ: https://leetcode.com/problems/network-delay-time/
// Author: github.com/lzl124631x
// Time: O(VE)
// Space: O(V)
class Solution {
public:
int networkDelayTime(vector<vector<int>>& E, int n, int k) {
vector<int> dist(n, INT_MAX);
dist[k - 1] = 0;
for (int i = 1; i < n; ++i) {
for (auto &e : E) {
int u = e[0] - 1, v = e[1] - 1, w = e[2];
if (dist[u] != INT_MAX) dist[v] = min(dist[v], dist[u] + w);
}
}
int ans = *max_element(begin(dist), end(dist));
return ans == INT_MAX ? -1 : ans;
}
};