Skip to content

Latest commit

 

History

History
242 lines (208 loc) · 8.1 KB

README.md

File metadata and controls

242 lines (208 loc) · 8.1 KB

Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

You have the following 3 operations permitted on a word:

  1. Insert a character
  2. Delete a character
  3. Replace a character

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation: 
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation: 
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

Companies:
Google, Amazon, LinkedIn, Bloomberg, Microsoft, Baidu, Yahoo

Related Topics:
String, Dynamic Programming

Similar Questions:

Solution 1. DP

Considering the typical "longest common sequence (LCS)" problem, we can use the same DP strategy for this problem, that is, branching based on the equality of A[i] and B[j].

Let dp[i + 1][j + 1] as the result for A[0..i] and B[0..j].

  • If A[i] equals B[j], dp[i + 1][j + 1] = dp[i][j].
  • If A[i] doesn't equal B[j], the best result comes from the min of the following 3 cases:
    • 1 + dp[i][j], where dp[i][j] is the result for A[0..(i - 1)] and B[0..(j - 1)], and 1 means we do a replacement between A[i] and B[j] at the end of A[0..i] and B[0..j].
    • 1 + dp[i + 1][j], where dp[i + 1][j] is the result for A[0..i] and B[0..(j - 1)], and 1 means we add B[j] to the end of B[0..(j - 1)].
    • 1 + dp[i][j + 1], where dp[i][j + 1] is the result for A[0..(i - 1)] and B[0..j], and 1 means we add A[i] to the end of A[0..(i - 1)].

In sum:

dp[i + 1][j + 1] = dp[i][j]                                            if A[i] == B[j]
                 = 1 + min{ dp[i][j], dp[i + 1][j], dp[i][j + 1] }     if A[i] != B[j]

where 0 <= i < M, 0 <= j < N

Trivial cases:

dp[i + 1][0] = i + 1
dp[0][j + 1] = j + 1

where 0 <= i < M, 0 <= j < N
// OJ: https://leetcode.com/problems/edit-distance
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(MN)
class Solution {
public:
    int minDistance(string A, string B) {
        if (A.empty() || B.empty()) return max(A.size(), B.size());
        int M = A.size(), N = B.size();
        vector<vector<int>> dp(M + 1, vector<int>(N + 1));
        for (int i = 0; i < M; ++i) dp[i + 1][0] = i + 1;
        for (int j = 0; j < N; ++j) dp[0][j + 1] = j + 1;
        for (int i = 0; i < M; ++i) {
            for (int j = 0; j < N; ++j) {
                if (A[i] == B[j]) dp[i + 1][j + 1] = dp[i][j];
                else dp[i + 1][j + 1] = 1 + min({ dp[i][j], dp[i][j + 1], dp[i + 1][j] });
            }
        }
        return dp[M][N];
    }
};

Or in another form.

// OJ: https://leetcode.com/problems/edit-distance
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(MN)
class Solution {
public:
    int minDistance(string A, string B) {
        int M = A.size(), N = B.size();
        vector<vector<int>> dp(M + 1, vector<int>(N + 1, INT_MAX));
        for (int i = 0; i <= M; ++i) {
            for (int j = 0; j <= N; ++j) {
                if (i == 0 || j == 0) dp[i][j] = i + j;
                else if (A[i - 1] == B[j - 1]) dp[i][j] = dp[i - 1][j - 1];
                else dp[i][j] = 1 + min({ dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1] });
            }
        }
        return dp[M][N];
    }
};

Solution 2. Space Optimization

Since dp[i + 1][j + 1] only relies on dp[i][j], dp[i + 1][j], dp[i][j + 1], we can reduce space from O(MN) to O(min(M, N)) by using rolling arrays.

// OJ: https://leetcode.com/problems/edit-distance
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(min(M, N))
class Solution {
public:
    int minDistance(string word1, string word2) {
        int M = word1.size(), N = word2.size();
        if (M < N) {
            swap(word1, word2);
            swap(M, N);
        }
        vector<vector<int>> dp(2, vector<int>(N + 1));
        for (int i = 1; i <= N; ++i) dp[0][i] = i;
        for (int i = 1; i <= M; ++i) {
            dp[i % 2][0] = i;
            for (int j = 1; j <= N; ++j) {
                if (word1[i - 1] == word2[j - 1]) dp[i % 2][j] = dp[(i - 1) % 2][j - 1];
                else dp[i % 2][j] = 1 + min(min(dp[(i - 1) % 2][j], dp[i % 2][j - 1]), dp[(i - 1) % 2][j - 1]);
            }
        }
        return dp[M % 2][N];
    }
};

Or in another form

// OJ: https://leetcode.com/problems/edit-distance
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(min(M, N))
class Solution {
public:
    int minDistance(string A, string B) {
        int M = A.size(), N = B.size();
        if (M < N) swap(A, B), swap(M, N); 
        vector<vector<int>> dp(2, vector<int>(N + 1, INT_MAX));
        for (int i = 0; i <= M; ++i) {
            for (int j = 0; j <= N; ++j) {
                if (i == 0 || j == 0) dp[i % 2][j] = i + j;
                else if (A[i - 1] == B[j - 1]) dp[i % 2][j] = dp[(i - 1) % 2][j - 1];
                else dp[i % 2][j] = 1 + min({ dp[(i - 1) % 2][j], dp[i % 2][j - 1], dp[(i - 1) % 2][j - 1] });
            }
        }
        return dp[M % 2][N];
    }
};

Solution 3. Further Space Optimization

The Solution 2 actually requires 2 * min(M, N) space, we can further reduce it to min(M, N).

One thing that prevents us from using one dimensional array is the dependency between dp[i + 1][j + 1] and dp[i][j] since when we visit dp[i + 1][j + 1], dp[i][j] is overwritten by dp[i + 1][j]. We can store dp[i][j] in a temporary variable.

// OJ: https://leetcode.com/problems/edit-distance
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(min(M, N))
class Solution {
public:
    int minDistance(string word1, string word2) {
        int M = word1.size(), N = word2.size();
        if (M < N) {
            swap(word1, word2);
            swap(M, N);
        }
        vector<int> dp(N + 1, 0);
        for (int i = 1; i <= N; ++i) dp[i] = i;
        for (int i = 1; i <= M; ++i) {
            int pre = dp[0];
            dp[0] = i;
            for (int j = 1; j <= N; ++j) {
                int tmp = dp[j];
                if (word1[i - 1] == word2[j - 1]) dp[j] = pre;
                else dp[j] = min(pre, min(dp[j - 1], dp[j])) + 1;
                pre = tmp;
            }
        }
        return dp[N];
    }
};

Or in another form

// OJ: https://leetcode.com/problems/edit-distance
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(min(M, N))
class Solution {
public:
    int minDistance(string A, string B) {
        int M = A.size(), N = B.size();
        if (M < N) swap(A, B), swap(M, N); 
        vector<int> dp(N + 1, INT_MAX);
        for (int i = 0; i <= M; ++i) {
            int prev;
            for (int j = 0; j <= N; ++j) {
                int cur = dp[j];
                if (i == 0 || j == 0) dp[j] = i + j;
                else if (A[i - 1] == B[j - 1]) dp[j] = prev;
                else dp[j] = 1 + min({ dp[j], dp[j - 1], prev });
                prev = cur;
            }
        }
        return dp[N];
    }
};