Given an integer array nums
, return the number of longest increasing subsequences.
Notice that the sequence has to be strictly increasing.
Example 1:
Input: nums = [1,3,5,4,7] Output: 2 Explanation: The two longest increasing subsequences are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: nums = [2,2,2,2,2] Output: 5 Explanation: The length of the longest increasing subsequence is 1, and there are 5 increasing subsequences of length 1, so output 5.
Constraints:
1 <= nums.length <= 2000
-106 <= nums[i] <= 106
Companies: Amazon, Google, Bloomberg
Related Topics:
Array, Dynamic Programming, Binary Indexed Tree, Segment Tree
Similar Questions:
- Longest Increasing Subsequence (Medium)
- Longest Continuous Increasing Subsequence (Easy)
- Longest Increasing Subsequence II (Hard)
Consider the subproblem in range A[0..i]
and the LIS must ends with A[i]
.
Let len[i]
be the length of longest LIS ending with A[i]
.
Let cnt[i]
be the count of longest LIS ending with A[i]
.
len[i] = 1 + max( len[j] | 0 <= j < i && A[j] < A[i] )
cnt[i] = sum( cnt[j] | 0 <= j < i && len[j] + 1 == len[i] )
The answer is
sum( cnt[i] | len[i] == maxLen )
where maxLen = max( len[i] | 0 <= i < N )
// OJ: https://leetcode.com/problems/number-of-longest-increasing-subsequence/
// Author: github.com/lzl124631x
// Time: O(N^2)
// Space: O(N)
class Solution {
public:
int findNumberOfLIS(vector<int>& A) {
if (A.empty()) return 0;
int N = A.size(), ans = 0, maxLen = 0;
vector<int> len(N, 1), cnt(N, 1);
for (int i = 0; i < N; ++i) {
for (int j = 0; j < i; ++j) {
if (A[j] >= A[i]) continue;
if (len[i] < 1 + len[j]) len[i] = 1 + len[j], cnt[i] = cnt[j];
else if (len[i] == 1 + len[j]) cnt[i] += cnt[j];
}
if (len[i] > maxLen) maxLen = len[i], ans = cnt[i];
else if (len[i] == maxLen) ans += cnt[i];
}
return ans;
}
};
// OJ: https://leetcode.com/problems/number-of-longest-increasing-subsequence
// Author: github.com/lzl124631x
// Time: O(N^2)
// Space: O(N)
class Solution {
public:
int findNumberOfLIS(vector<int>& A) {
int N = A.size(), maxLen = 0, ans = 0;
vector<int> len(N), cnt(N);
function<void(int)> dp = [&](int i) {
if (i == N || len[i]) return;
len[i] = 1;
cnt[i] = 1;
for (int j = 0; j < i; ++j) {
if (A[j] >= A[i]) continue;
dp(j);
if (len[i] < 1 + len[j]) len[i] = 1 + len[j], cnt[i] = cnt[j];
else if (len[i] == 1 + len[j]) cnt[i] += cnt[j];
}
};
for (int i = 0; i < N; ++i) {
dp(i);
if (len[i] > maxLen) maxLen = len[i], ans = cnt[i];
else if (len[i] == maxLen) ans += cnt[i];
}
return ans;
}
};