Given a m x n
grid
filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example 1:
Input: grid = [[1,3,1],[1,5,1],[4,2,1]] Output: 7 Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.
Example 2:
Input: grid = [[1,2,3],[4,5,6]] Output: 12
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 200
0 <= grid[i][j] <= 100
Companies:
Google, Goldman Sachs, Amazon
Related Topics:
Array, Dynamic Programming, Matrix
Similar Questions:
- Unique Paths (Medium)
- Dungeon Game (Hard)
- Cherry Pickup (Hard)
- Maximum Number of Points with Cost (Medium)
// OJ: https://leetcode.com/problems/minimum-path-sum/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(1)
class Solution {
public:
int minPathSum(vector<vector<int>>& A) {
int M = A.size(), N = A[0].size();
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
int sum = min(i - 1 >= 0 ? A[i - 1][j] : INT_MAX, j - 1 >= 0 ? A[i][j - 1] : INT_MAX);
A[i][j] += sum == INT_MAX ? 0 : sum;
}
}
return A[M - 1][N - 1];
}
};