Skip to content

Latest commit

 

History

History

53

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

A subarray is a contiguous part of an array.

 

Example 1:

Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Example 2:

Input: nums = [1]
Output: 1

Example 3:

Input: nums = [5,4,-1,7,8]
Output: 23

 

Constraints:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

 

Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

Companies:
LinkedIn, Amazon, Apple, Adobe, Microsoft, Google, Bloomberg, Cisco, Uber, eBay, Intel, Oracle, Walmart Labs, Facebook, Yahoo, Goldman Sachs, JPMorgan, ServiceNow, Shopee

Related Topics:
Array, Divide and Conquer, Dynamic Programming

Similar Questions:

Solution 1. Rolling Sum + Greedy

We can first get the rolling sum so that sum[i] = nums[0] + ... + nums[i]. With partial_sum we can do that in place.

Then this problem is almost the same as 121. Best Time to Buy and Sell Stock -- finding the maximum sum[j] - sum[i] where j > i. The only difference is that the sub array can start at index 0, so we also need to take sum[i] where 0 <= i < N into consideration. So the "minimum sum we've seen so far" should be initialized as 0.

// OJ: https://leetcode.com/problems/maximum-subarray/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(1)
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        partial_sum(nums.begin(), nums.end(), nums.begin());
        int minSum = 0, ans = INT_MIN;
        for (int n : nums) {
            ans = max(ans, n - minSum);
            minSum = min(minSum, n);
        }
        return ans;
    }
};

Or

// OJ: https://leetcode.com/problems/maximum-subarray/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(1)
class Solution {
public:
    int maxSubArray(vector<int>& A) {
        int mn = 0, sum = 0, ans = INT_MIN;
        for (int n : A) {
            sum += n;
            ans = max(ans, sum - mn);
            mn = min(mn, sum);
        }
        return ans;
    }
};

Solution 2. DP

Let dp[i + 1] be the sum of maximum subarray ending with nums[i].

dp[i + 1] = max{
                dp[i] + A[i],   if dp[i] > 0
                A[i]            if dp[i] <= 0
            }

Or

dp[i + 1] = max(dp[i], 0) + A[i]

Where 0 <= i < N. Note that we can set dp[0] = 0 so that the equation stay true for i = 0.

The result is max{ dp[1], ..., dp[N] }.

// OJ: https://leetcode.com/problems/maximum-subarray/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(N)
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int ans = INT_MIN, N = nums.size();
        vector<int> dp(N + 1, 0);
        for (int i = 0; i < N; ++i) ans = max(ans, dp[i + 1] = max(dp[i], 0) + nums[i]);
        return ans;
    }
};

Solution 3. DP

We can optimize Solution 2 by storing dp in nums so that the space complexity is reduced from O(N) to O(1).

// OJ: https://leetcode.com/problems/maximum-subarray/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(1)
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int ans = nums[0];
        for (int i = 1; i < nums.size(); ++i) {
            nums[i] += max(nums[i - 1], 0);
            ans = max(ans, nums[i]);
        }
        return ans;
    }
};

Solution 4. DP

What if we are not allowed th change the value in nums array?

Since dp[i+1] is only dependent on dp[i], we can use O(1) space to store dp array -- only store the last value.

So we put the maximum subarray sum we've seen thus far into the cur variable. When we need to update cur for the current nums[i], we can simply do cur = max(cur, 0) + n.

// OJ: https://leetcode.com/problems/maximum-subarray/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(1)
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int ans = INT_MIN, cur = INT_MIN;
        for (int n : nums) {
            cur = max(cur, 0) + n;
            ans = max(ans, cur);
        }
        return ans;
    }
};

Solution 5. Divide and Conquer

See details here

// OJ: https://leetcode.com/problems/maximum-subarray/
// Author: github.com/lzl124631x
// Time: O(NlogN)
// Space: O(logN)
class Solution {
private:
    int crossSum(vector<int>& nums, int L, int R, int p) {
        if (L == R) return nums[L];
        int left = INT_MIN, right = INT_MIN, i, sum;
        for (i = p, sum = 0; i >= L; --i) left = max(left, sum += nums[i]);
        for (i = p + 1, sum = 0; i <= R; ++i) right = max(right, sum += nums[i]);
        return left + right;
    }
    
    int helper(vector<int>& nums, int L, int R) {
        if (L == R) return nums[L];
        int p = (L + R) / 2;
        int left = helper(nums, L, p);
        int right = helper(nums, p + 1, R);
        int cross = crossSum(nums, L, R, p);
        return max(left, max(right, cross));
    }
public:
    int maxSubArray(vector<int>& nums) {
        return helper(nums, 0, nums.size() - 1);
    }
};