Skip to content

Latest commit

 

History

History
81 lines (66 loc) · 3.33 KB

README.md

File metadata and controls

81 lines (66 loc) · 3.33 KB

Given a list of non-overlapping axis-aligned rectangles rects, write a function pick which randomly and uniformily picks an integer point in the space covered by the rectangles.

Note:

  1. An integer point is a point that has integer coordinates. 
  2. A point on the perimeter of a rectangle is included in the space covered by the rectangles. 
  3. ith rectangle = rects[i][x1,y1,x2,y2], where [x1, y1] are the integer coordinates of the bottom-left corner, and [x2, y2] are the integer coordinates of the top-right corner.
  4. length and width of each rectangle does not exceed 2000.
  5. 1 <= rects.length <= 100
  6. pick return a point as an array of integer coordinates [p_x, p_y]
  7. pick is called at most 10000 times.

Example 1:

Input: 
["Solution","pick","pick","pick"]
[[[[1,1,5,5]]],[],[],[]]
Output: 
[null,[4,1],[4,1],[3,3]]

Example 2:

Input: 
["Solution","pick","pick","pick","pick","pick"]
[[[[-2,-2,-1,-1],[1,0,3,0]]],[],[],[],[],[]]
Output: 
[null,[-1,-2],[2,0],[-2,-1],[3,0],[-2,-2]]

Explanation of Input Syntax:

The input is two lists: the subroutines called and their arguments. Solution's constructor has one argument, the array of rectangles rects. pick has no arguments. Arguments are always wrapped with a list, even if there aren't any.

 

Related Topics:
Binary Search, Random

Similar Questions:

Solution 1. Binary Search

// OJ: https://leetcode.com/problems/random-point-in-non-overlapping-rectangles/
// Author: github.com/lzl124631x
// Time:
//      Solution: O(N)
//      pick: O(logN)
// Space: O(N)
class Solution {
    vector<vector<int>> A;
    vector<int> size;
    int total = 0;
public:
    Solution(vector<vector<int>>& rects) : A(rects) {
        for (auto &r : A) size.push_back(total += (r[3] - r[1] + 1) * (r[2] - r[0] + 1));
    }
    vector<int> pick() {
        int r = rand() % total;
        int i = upper_bound(begin(size), end(size), r) - begin(size);
        r -= i > 0 ? size[i - 1] : 0;
        int w = A[i][3] - A[i][1] + 1;
        return { A[i][0] + r / w, A[i][1] + r % w };
    }
};