You are given an array of binary strings strs
and two integers m
and n
.
Return the size of the largest subset of strs
such that there are at most m
0
's and n
1
's in the subset.
A set x
is a subset of a set y
if all elements of x
are also elements of y
.
Example 1:
Input: strs = ["10","0001","111001","1","0"], m = 5, n = 3 Output: 4 Explanation: The largest subset with at most 5 0's and 3 1's is {"10", "0001", "1", "0"}, so the answer is 4. Other valid but smaller subsets include {"0001", "1"} and {"10", "1", "0"}. {"111001"} is an invalid subset because it contains 4 1's, greater than the maximum of 3.
Example 2:
Input: strs = ["10","0","1"], m = 1, n = 1 Output: 2 Explanation: The largest subset is {"0", "1"}, so the answer is 2.
Constraints:
1 <= strs.length <= 600
1 <= strs[i].length <= 100
strs[i]
consists only of digits'0'
and'1'
.1 <= m, n <= 100
Companies: Uber, Google, Adobe, Amazon, Apple
Related Topics:
Array, String, Dynamic Programming
Similar Questions:
- Count Subarrays With More Ones Than Zeros (Medium)
- Non-negative Integers without Consecutive Ones (Hard)
- All Divisions With the Highest Score of a Binary Array (Medium)
Note: this is a 0-1 Knapsack problem.
Let dp[i + 1][j][k]
be the answer of subproblem if we only use the first i + 1
strings (strs[0]
to strs[i]
) given m = j
, n = k
.
dp[i + 1][j][k] = max(
dp[i][j][k], // If we don't use strs[i]
1 + dp[i][j - zero[i]][k - one[i]] // If we use strs[i]
)
where zero[i]
and one[i]
are the counts of zeros and ones in strs[i]
respectively.
// OJ: https://leetcode.com/problems/ones-and-zeroes/
// Author: github.com/lzl124631x
// Time: O(MNS)
// Space: O(MNS)
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
int S = strs.size();
vector<vector<vector<int>>> dp(S + 1, vector<vector<int>>(m + 1, vector<int>(n + 1)));
for (int i = 0; i < S; ++i) {
int zero = count(strs[i].begin(), strs[i].end(), '0'), one = strs[i].size() - zero;
for (int j = 0; j <= m; ++j) {
for (int k = 0; k <= n; ++k) {
dp[i + 1][j][k] = max(dp[i][j][k], j >= zero && k >= one ? 1 + dp[i][j - zero][k - one] : 0);
}
}
}
return dp[S][m][n];
}
};
// OJ: https://leetcode.com/problems/ones-and-zeroes/
// Author: github.com/lzl124631x
// Time: O(MNS)
// Space: O(MN)
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
int S = strs.size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
for (int i = 0; i < S; ++i) {
int zero = count(strs[i].begin(), strs[i].end(), '0'), one = strs[i].size() - zero;
for (int j = m; j >= zero; --j) {
for (int k = n; k >= one; --k) {
dp[j][k] = max(dp[j][k], 1 + dp[j - zero][k - one]);
}
}
}
return dp[m][n];
}
};