Given an array nums
of distinct integers, return all the possible permutations. You can return the answer in any order.
Example 1:
Input: nums = [1,2,3] Output: [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
Example 2:
Input: nums = [0,1] Output: [[0,1],[1,0]]
Example 3:
Input: nums = [1] Output: [[1]]
Constraints:
1 <= nums.length <= 6
-10 <= nums[i] <= 10
- All the integers of
nums
are unique.
Companies: Bloomberg, Apple, Goldman Sachs
Related Topics:
Array, Backtracking
Similar Questions:
- Next Permutation (Medium)
- Permutations II (Medium)
- Permutation Sequence (Hard)
- Combinations (Medium)
For a particular DFS level, let start
be the index of element we manipulate in this level.
We swap nums[start]
with a digit whose index >= start
.
After the swap, we DFS one step further, i.e. dfs(nums, start + 1)
.
Once the children DFS returns, we recover the array by swapping them back.
The exit condition of DFS is when the start
index points to the last digit, then we can push the current nums
into answers.
The initial call is dfs(nums, 0)
.
Note that:
- This function doesn't care whether the
nums
is sorted. - The permutations generated is NOT in lexigraphical order. For example, if input is
[1,2,3]
, then output is[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,2,1],[3,1,2]]
// OJ: https://leetcode.com/problems/permutations/
// Author: github.com/lzl124631x
// Time: O(N!)
// Space: O(N)
class Solution {
public:
vector<vector<int>> permute(vector<int>& A) {
vector<vector<int>> ans;
int N = A.size();
function<void(int)> dfs = [&](int start) {
if (start == N) {
ans.push_back(A);
return;
}
for (int i = start; i < N; ++i) {
swap(A[i], A[start]);
dfs(start + 1);
swap(A[i], A[start]);
}
};
dfs(0);
return ans;
}
};
Reuse the solution for 31. Next Permutation (Medium).
// OJ: https://leetcode.com/problems/permutations/
// Author: github.com/lzl124631x
// Time: O(N!)
// Space: O(1)
class Solution {
bool nextPermutation(vector<int>& A) {
int N = A.size(), i = N - 1;
while (i - 1 >= 0 && A[i - 1] >= A[i]) --i; // find the first element of a descending subarray from the end.
reverse(begin(A) + i, end(A)); // reverse this descending subarray
if (i == 0) return false;
swap(*upper_bound(begin(A) + i, end(A), A[i - 1]), A[i - 1]); // swap A[i-1] with the first element greater than `A[i-1]` in the subarray.
return true;
}
public:
vector<vector<int>> permute(vector<int>& nums) {
sort(nums.begin(), nums.end());
vector<vector<int>> ans { nums };
while (nextPermutation(nums)) ans.push_back(nums);
return ans;
}
};