Design a data structure that supports all following operations in average O(1) time.
Note: Duplicate elements are allowed.
insert(val)
: Inserts an item val to the collection.remove(val)
: Removes an item val from the collection if present.getRandom
: Returns a random element from current collection of elements. The probability of each element being returned is linearly related to the number of same value the collection contains.
Example:
// Init an empty collection. RandomizedCollection collection = new RandomizedCollection();// Inserts 1 to the collection. Returns true as the collection did not contain 1. collection.insert(1);
// Inserts another 1 to the collection. Returns false as the collection contained 1. Collection now contains [1,1]. collection.insert(1);
// Inserts 2 to the collection, returns true. Collection now contains [1,1,2]. collection.insert(2);
// getRandom should return 1 with the probability 2/3, and returns 2 with the probability 1/3. collection.getRandom();
// Removes 1 from the collection, returns true. Collection now contains [1,2]. collection.remove(1);
// getRandom should return 1 and 2 both equally likely. collection.getRandom();
Related Topics:
Array, Hash Table, Design
Similar Questions:
// OJ: https://leetcode.com/problems/insert-delete-getrandom-o1-duplicates-allowed/
// Author: github.com/lzl124631x
// Time: O(1) for all
// Space: O(N)
class RandomizedCollection {
vector<pair<int, int>> v; // value, index among the numbers of the same value
unordered_map<int, vector<int>> m; // value to indexes in `v`
public:
RandomizedCollection() {}
bool insert(int val) {
bool ans = m.count(val);
m[val].push_back(v.size());
v.emplace_back(val, m[val].size() - 1);
return ans;
}
bool remove(int val) {
auto it = m.find(val);
if (it == m.end()) return false;
auto &last = v.back();
m[last.first][last.second] = m[val].back();
v[m[val].back()] = last;
m[val].pop_back();
if (m[val].empty()) m.erase(val);
v.pop_back();
return true;
}
int getRandom() {
return v[rand() % v.size()].first;
}
};