Given a positive integer n
, find the pivot integer x
such that:
- The sum of all elements between
1
andx
inclusively equals the sum of all elements betweenx
andn
inclusively.
Return the pivot integer x
. If no such integer exists, return -1
. It is guaranteed that there will be at most one pivot index for the given input.
Example 1:
Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21.
Example 2:
Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1.
Example 3:
Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.
Constraints:
1 <= n <= 1000
Companies: Amazon
Related Topics:
Math, Prefix Sum
Similar Questions:
// OJ: https://leetcode.com/problems/find-the-pivot-integer
// Author: github.com/lzl124631x
// Time: O(1)
// Space: O(1)
class Solution {
public:
int pivotInteger(int n) {
int m = (n * n + n) / 2, s = sqrt(m);
return s * s == m ? s : -1;
}
};