You are given two 0-indexed integer arrays nums
and removeQueries
, both of length n
. For the ith
query, the element in nums
at the index removeQueries[i]
is removed, splitting nums
into different segments.
A segment is a contiguous sequence of positive integers in nums
. A segment sum is the sum of every element in a segment.
Return an integer array answer
, of length n
, where answer[i]
is the maximum segment sum after applying the ith
removal.
Note: The same index will not be removed more than once.
Example 1:
Input: nums = [1,2,5,6,1], removeQueries = [0,3,2,4,1] Output: [14,7,2,2,0] Explanation: Using 0 to indicate a removed element, the answer is as follows: Query 1: Remove the 0th element, nums becomes [0,2,5,6,1] and the maximum segment sum is 14 for segment [2,5,6,1]. Query 2: Remove the 3rd element, nums becomes [0,2,5,0,1] and the maximum segment sum is 7 for segment [2,5]. Query 3: Remove the 2nd element, nums becomes [0,2,0,0,1] and the maximum segment sum is 2 for segment [2]. Query 4: Remove the 4th element, nums becomes [0,2,0,0,0] and the maximum segment sum is 2 for segment [2]. Query 5: Remove the 1st element, nums becomes [0,0,0,0,0] and the maximum segment sum is 0, since there are no segments. Finally, we return [14,7,2,2,0].
Example 2:
Input: nums = [3,2,11,1], removeQueries = [3,2,1,0] Output: [16,5,3,0] Explanation: Using 0 to indicate a removed element, the answer is as follows: Query 1: Remove the 3rd element, nums becomes [3,2,11,0] and the maximum segment sum is 16 for segment [3,2,11]. Query 2: Remove the 2nd element, nums becomes [3,2,0,0] and the maximum segment sum is 5 for segment [3,2]. Query 3: Remove the 1st element, nums becomes [3,0,0,0] and the maximum segment sum is 3 for segment [3]. Query 4: Remove the 0th element, nums becomes [0,0,0,0] and the maximum segment sum is 0, since there are no segments. Finally, we return [16,5,3,0].
Constraints:
n == nums.length == removeQueries.length
1 <= n <= 105
1 <= nums[i] <= 109
0 <= removeQueries[i] < n
- All the values of
removeQueries
are unique.
Companies: Infosys
Related Topics:
Array, Union Find, Prefix Sum, Ordered Set
// OJ: https://leetcode.com/problems/maximum-segment-sum-after-removals
// Author: github.com/lzl124631x
// Time: O(NlogN)
// Space: O(N)
class Solution {
public:
vector<long long> maximumSegmentSum(vector<int>& A, vector<int>& Q) {
int N = A.size();
vector<long long> ans;
typedef pair<int, int> PII;
vector<long long> sum(N + 1);
for (int i = 0; i < N; ++i) sum[i + 1] = sum[i] + A[i];
auto cmp = [&](auto &a, auto &b) { return a.second < b.second; };
set<PII, decltype(cmp)> intervals(cmp);
intervals.insert({0, N - 1});
multiset<long long> s{sum.back()};
for (int q : Q) {
auto it = intervals.lower_bound({q, q});
auto [a, b] = *it;
intervals.erase(it);
s.erase(s.find(sum[b + 1] - sum[a]));
if (a <= q - 1) {
intervals.insert({a, q - 1});
s.insert(sum[q] - sum[a]);
}
if (b >= q + 1) {
intervals.insert({q + 1, b});
s.insert(sum[b + 1] - sum[q + 1]);
}
ans.push_back(s.size() ? *s.rbegin() : 0);
}
return ans;
}
};
Traverse the queries in the reverse order. Use Union find to keep track of the segment sums.
// OJ: https://leetcode.com/problems/maximum-segment-sum-after-removals
// Author: github.com/lzl124631x
// Time: O(NlogN)
// Space: O(N)
class Solution {
public:
vector<long long> maximumSegmentSum(vector<int>& A, vector<int>& Q) {
long long N = A.size(), mxSum = 0;
vector<long long> ans(N), sum(begin(A), end(A));
vector<int> id(N), seen(N);
iota(begin(id), end(id), 0);
function<int(int)> find = [&](int a) {
return id[a] == a ? a : (id[a] = find(id[a]));
};
auto connect = [&](int a, int b) {
int p = find(a), q = find(b);
if (p == q) return;
id[q] = p;
sum[p] += sum[q];
};
for (int i = N - 1; i >= 0; --i) {
int q = Q[i];
seen[q] = 1;
if (q - 1 >= 0 && seen[q - 1]) connect(q - 1, q);
if (q + 1 < N && seen[q + 1]) connect(q, q + 1);
mxSum = max(mxSum, sum[find(q)]);
if (i > 0) ans[i - 1] = mxSum;
}
return ans;
}
};