You are given an n x n
integer matrix grid
.
Generate an integer matrix maxLocal
of size (n - 2) x (n - 2)
such that:
maxLocal[i][j]
is equal to the largest value of the3 x 3
matrix ingrid
centered around rowi + 1
and columnj + 1
.
In other words, we want to find the largest value in every contiguous 3 x 3
matrix in grid
.
Return the generated matrix.
Example 1:
Input: grid = [[9,9,8,1],[5,6,2,6],[8,2,6,4],[6,2,2,2]] Output: [[9,9],[8,6]] Explanation: The diagram above shows the original matrix and the generated matrix. Notice that each value in the generated matrix corresponds to the largest value of a contiguous 3 x 3 matrix in grid.
Example 2:
Input: grid = [[1,1,1,1,1],[1,1,1,1,1],[1,1,2,1,1],[1,1,1,1,1],[1,1,1,1,1]] Output: [[2,2,2],[2,2,2],[2,2,2]] Explanation: Notice that the 2 is contained within every contiguous 3 x 3 matrix in grid.
Constraints:
n == grid.length == grid[i].length
3 <= n <= 100
1 <= grid[i][j] <= 100
Companies: Google
// OJ: https://leetcode.com/problems/largest-local-values-in-a-matrix
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(1) extra space
class Solution {
public:
vector<vector<int>> largestLocal(vector<vector<int>>& A) {
int M = A.size(), N = A[0].size();
vector<vector<int>> ans(M - 2, vector<int>(N - 2));
for (int i = 1; i < M - 1; ++i) {
for (int j = 1; j < N - 1; ++j) {
int mx = 0;
for (int dx = -1; dx <= 1; ++dx) {
for (int dy = -1; dy <= 1; ++dy) {
mx = max(mx, A[i + dx][j + dy]);
}
}
ans[i - 1][j - 1] = mx;
}
}
return ans;
}
};