You are given an integer finalSum
. Split it into a sum of a maximum number of unique positive even integers.
- For example, given
finalSum = 12
, the following splits are valid (unique positive even integers summing up tofinalSum
):(2 + 10)
,(2 + 4 + 6)
, and(4 + 8)
. Among them,(2 + 4 + 6)
contains the maximum number of integers. Note thatfinalSum
cannot be split into(2 + 2 + 4 + 4)
as all the numbers should be unique.
Return a list of integers that represent a valid split containing a maximum number of integers. If no valid split exists for finalSum
, return an empty list. You may return the integers in any order.
Example 1:
Input: finalSum = 12 Output: [2,4,6] Explanation: The following are some valid splits:(2 + 10)
,(2 + 4 + 6)
, and(4 + 8)
. (2 + 4 + 6) has the maximum number of integers, which is 3. Thus, we return [2,4,6]. Note that [2,6,4], [6,2,4], etc. are also accepted.
Example 2:
Input: finalSum = 7 Output: [] Explanation: There are no valid splits for the given finalSum. Thus, we return an empty array.
Example 3:
Input: finalSum = 28 Output: [6,8,2,12] Explanation: The following are some valid splits:(2 + 26)
,(6 + 8 + 2 + 12)
, and(4 + 24)
.(6 + 8 + 2 + 12)
has the maximum number of integers, which is 4. Thus, we return [6,8,2,12]. Note that [10,2,4,12], [6,2,4,16], etc. are also accepted.
Constraints:
1 <= finalSum <= 1010
If finalSum
is odd, return empty array.
Otherwise, we keep trying subtracting 2, 4, 6, 8, ...
from finalSum
via backtracking.
// OJ: https://leetcode.com/problems/maximum-split-of-positive-even-integers/
// Author: github.com/lzl124631x
// Time: O(sqrt(N))
// Space: O(sqrt(N))
class Solution {
public:
vector<long long> maximumEvenSplit(long long s) {
if (s % 2) return {};
vector<long long> ans;
function<bool(long, long)>dfs = [&](long i, long target) {
if (target == 0) return true;
if (target < i) return false;
ans.push_back(i);
if (dfs(i + 2, target - i)) return true; // use `i`
ans.pop_back();
return dfs(i + 2, target); // skip `i`
};
dfs(2, s);
return ans;
}
};
In solution 1, in fact we only backtrack at most once.
We can keep trying subtracting 2, 4, 6, 8, ...
from finalSum
. We stop the loop when subtracting the current number i
is invalid -- s - i < i + 2
(the reminder after the subtraction is less than the next even number). And we push the reminder into the answer.
// OJ: https://leetcode.com/problems/maximum-split-of-positive-even-integers/
// Author: github.com/lzl124631x
// Time: O(sqrt(N))
// Space: O(1)
class Solution {
public:
vector<long long> maximumEvenSplit(long long s) {
if (s % 2) return {};
vector<long long> ans;
for (int i = 2; s - i >= i + 2; i += 2) {
ans.push_back(i);
s -= i;
}
ans.push_back(s);
return ans;
}
};
https://leetcode.com/problems/maximum-split-of-positive-even-integers/discuss/1783586