You are given a string num
, representing a large integer, and an integer k
.
We call some integer wonderful if it is a permutation of the digits in num
and is greater in value than num
. There can be many wonderful integers. However, we only care about the smallest-valued ones.
- For example, when
num = "5489355142"
:<ul> <li>The 1<sup>st</sup> smallest wonderful integer is <code>"5489355214"</code>.</li> <li>The 2<sup>nd</sup> smallest wonderful integer is <code>"5489355241"</code>.</li> <li>The 3<sup>rd</sup> smallest wonderful integer is <code>"5489355412"</code>.</li> <li>The 4<sup>th</sup> smallest wonderful integer is <code>"5489355421"</code>.</li> </ul> </li>
Return the minimum number of adjacent digit swaps that needs to be applied to num
to reach the kth
smallest wonderful integer.
The tests are generated in such a way that kth
smallest wonderful integer exists.
Example 1:
Input: num = "5489355142", k = 4 Output: 2 Explanation: The 4th smallest wonderful number is "5489355421". To get this number: - Swap index 7 with index 8: "5489355142" -> "5489355412" - Swap index 8 with index 9: "5489355412" -> "5489355421"
Example 2:
Input: num = "11112", k = 4 Output: 4 Explanation: The 4th smallest wonderful number is "21111". To get this number: - Swap index 3 with index 4: "11112" -> "11121" - Swap index 2 with index 3: "11121" -> "11211" - Swap index 1 with index 2: "11211" -> "12111" - Swap index 0 with index 1: "12111" -> "21111"
Example 3:
Input: num = "00123", k = 1 Output: 1 Explanation: The 1st smallest wonderful number is "00132". To get this number: - Swap index 3 with index 4: "00123" -> "00132"
Constraints:
2 <= num.length <= 1000
1 <= k <= 1000
num
only consists of digits.
Companies:
Google
Related Topics:
String, Greedy
Similar Questions:
// OJ: https://leetcode.com/problems/minimum-adjacent-swaps-to-reach-the-kth-smallest-number/
// Author: github.com/lzl124631x
// Time: O(NK + N^2)
// Space: O(1)
class Solution {
public:
int getMinSwaps(string s, int k) {
auto start = s;
for (int i = 0; i < k; ++i) {
next_permutation(begin(s), end(s));
}
int ans = 0;
for (int i = s.size() - 1; i >= 0; --i) {
if (start[i] == s[i]) continue;
int j = i - 1;
while (j >= 0 && s[j] != start[i]) --j;
ans += i - j;
for (; j < i; ++j) s[j] = s[j + 1];
s[i] = start[i];
}
return ans;
}
};