You are given a list of preferences
for n
friends, where n
is always even.
For each person i
, preferences[i]
contains a list of friends sorted in the order of preference. In other words, a friend earlier in the list is more preferred than a friend later in the list. Friends in each list are denoted by integers from 0
to n-1
.
All the friends are divided into pairs. The pairings are given in a list pairs
, where pairs[i] = [xi, yi]
denotes xi
is paired with yi
and yi
is paired with xi
.
However, this pairing may cause some of the friends to be unhappy. A friend x
is unhappy if x
is paired with y
and there exists a friend u
who is paired with v
but:
x
prefersu
overy
, andu
prefersx
overv
.
Return the number of unhappy friends.
Example 1:
Input: n = 4, preferences = [[1, 2, 3], [3, 2, 0], [3, 1, 0], [1, 2, 0]], pairs = [[0, 1], [2, 3]] Output: 2 Explanation: Friend 1 is unhappy because: - 1 is paired with 0 but prefers 3 over 0, and - 3 prefers 1 over 2. Friend 3 is unhappy because: - 3 is paired with 2 but prefers 1 over 2, and - 1 prefers 3 over 0. Friends 0 and 2 are happy.
Example 2:
Input: n = 2, preferences = [[1], [0]], pairs = [[1, 0]] Output: 0 Explanation: Both friends 0 and 1 are happy.
Example 3:
Input: n = 4, preferences = [[1, 3, 2], [2, 3, 0], [1, 3, 0], [0, 2, 1]], pairs = [[1, 3], [0, 2]] Output: 4
Constraints:
2 <= n <= 500
n
is even.preferences.length == n
preferences[i].length == n - 1
0 <= preferences[i][j] <= n - 1
preferences[i]
does not containi
.- All values in
preferences[i]
are unique. pairs.length == n/2
pairs[i].length == 2
xi != yi
0 <= xi, yi <= n - 1
- Each person is contained in exactly one pair.
Related Topics:
Array
Note that given the definition, if x
is unhappy due to (x, y)
and (u, v)
, then u
is unhappy too.
// OJ: https://leetcode.com/problems/count-unhappy-friends/
// Author: github.com/lzl124631x
// Time: O(N^2)
// Space: O(N^2)
class Solution {
unordered_map<int, unordered_map<int, int>> m;
unordered_set<int> s;
void unhappy(int x, int y, int u, int v) {
if (m[x][y] < m[x][u] || m[u][v] < m[u][x]) return;
s.insert(x);
s.insert(u);
}
public:
int unhappyFriends(int n, vector<vector<int>>& pref, vector<vector<int>>& pairs) {
for (int i = 0; i < pref.size(); ++i) {
for (int j = 0; j < pref[i].size(); ++j) m[i][pref[i][j]] = j;
}
for (int i = 0; i < pairs.size(); ++i) {
int x = pairs[i][0], y = pairs[i][1];
for (int j = i + 1; j < pairs.size(); ++j) {
int u = pairs[j][0], v = pairs[j][1];
unhappy(x, y, u, v);
unhappy(x, y, v, u);
unhappy(y, x, u, v);
unhappy(y, x, v, u);
}
}
return s.size();
}
};
It's more performant if we use vector
.
// OJ: https://leetcode.com/problems/count-unhappy-friends/
// Author: github.com/lzl124631x
// Time: O(N^2)
// Space: O(N^2)
class Solution {
vector<vector<int>> pref;
vector<bool> unhappy;
void check(int x, int y, int u, int v) {
if (pref[x][y] < pref[x][u] || pref[u][v] < pref[u][x]) return;
unhappy[x] = true;
unhappy[u] = true;
}
public:
int unhappyFriends(int n, vector<vector<int>>& preferences, vector<vector<int>>& pairs) {
pref.assign(n, vector<int>(n));
for (int i = 0; i < n; ++i) {
for (int j = 0; j < preferences[i].size(); ++j) pref[i][preferences[i][j]] = j;
}
unhappy.assign(n, false);
for (int i = 0; i < pairs.size(); ++i) {
int x = pairs[i][0], y = pairs[i][1];
for (int j = i + 1; j < pairs.size(); ++j) {
int u = pairs[j][0], v = pairs[j][1];
check(x, y, u, v);
check(x, y, v, u);
check(y, x, u, v);
check(y, x, v, u);
}
}
return accumulate(begin(unhappy), end(unhappy), 0);
}
};