Given a binary tree root
and a linked list with head
as the first node.
Return True if all the elements in the linked list starting from the head
correspond to some downward path connected in the binary tree otherwise return False.
In this context downward path means a path that starts at some node and goes downwards.
Example 1:
Input: head = [4,2,8], root = [1,4,4,null,2,2,null,1,null,6,8,null,null,null,null,1,3] Output: true Explanation: Nodes in blue form a subpath in the binary Tree.
Example 2:
Input: head = [1,4,2,6], root = [1,4,4,null,2,2,null,1,null,6,8,null,null,null,null,1,3] Output: true
Example 3:
Input: head = [1,4,2,6,8], root = [1,4,4,null,2,2,null,1,null,6,8,null,null,null,null,1,3]
Output: false
Explanation: There is no path in the binary tree that contains all the elements of the linked list from head
.
Constraints:
1 <= node.val <= 100
for each node in the linked list and binary tree.- The given linked list will contain between
1
and100
nodes. - The given binary tree will contain between
1
and2500
nodes.
Related Topics:
Linked List, Dynamic Programming, Tree
// OJ: https://leetcode.com/problems/linked-list-in-binary-tree/
// Author: github.com/lzl124631x
// Time: O(N * min(L, H))
// Space: O(H)
class Solution {
bool match(ListNode *head, TreeNode *root) {
if (!head) return true;
if (!root) return false;
if (head->val != root->val) return false;
return match(head->next, root->left) || match(head->next, root->right);
}
public:
bool isSubPath(ListNode* head, TreeNode* root) {
if (!head) return true;
if (!root) return false;
if (match(head, root)) return true;
return isSubPath(head, root->left) || isSubPath(head, root->right);
}
};