Implement the class ProductOfNumbers
that supports two methods:
1. add(int num)
- Adds the number
num
to the back of the current list of numbers.
2. getProduct(int k)
- Returns the product of the last
k
numbers in the current list. - You can assume that always the current list has at least
k
numbers.
At any time, the product of any contiguous sequence of numbers will fit into a single 32-bit integer without overflowing.
Example:
Input ["ProductOfNumbers","add","add","add","add","add","getProduct","getProduct","getProduct","add","getProduct"] [[],[3],[0],[2],[5],[4],[2],[3],[4],[8],[2]] Output [null,null,null,null,null,null,20,40,0,null,32] Explanation ProductOfNumbers productOfNumbers = new ProductOfNumbers(); productOfNumbers.add(3); // [3] productOfNumbers.add(0); // [3,0] productOfNumbers.add(2); // [3,0,2] productOfNumbers.add(5); // [3,0,2,5] productOfNumbers.add(4); // [3,0,2,5,4] productOfNumbers.getProduct(2); // return 20. The product of the last 2 numbers is 5 * 4 = 20 productOfNumbers.getProduct(3); // return 40. The product of the last 3 numbers is 2 * 5 * 4 = 40 productOfNumbers.getProduct(4); // return 0. The product of the last 4 numbers is 0 * 2 * 5 * 4 = 0 productOfNumbers.add(8); // [3,0,2,5,4,8] productOfNumbers.getProduct(2); // return 32. The product of the last 2 numbers is 4 * 8 = 32
Constraints:
- There will be at most
40000
operations considering bothadd
andgetProduct
. 0 <= num <= 100
1 <= k <= 40000
// OJ: https://leetcode.com/problems/product-of-the-last-k-numbers/
// Author: github.com/lzl124631x
// Time: O(1) for all functions
// Space: O(N)
class ProductOfNumbers {
vector<int> v{1};
public:
ProductOfNumbers() {}
void add(int num) {
if (num) v.push_back(v.back() * num);
else v = {1};
}
int getProduct(int k) {
return k < v.size() ? v.back() / v[v.size() - k - 1] : 0;
}
};