Given a m * n
matrix mat
and an integer K
, return a matrix answer
where each answer[i][j]
is the sum of all elements mat[r][c]
for i - K <= r <= i + K, j - K <= c <= j + K
, and (r, c)
is a valid position in the matrix.
Example 1:
Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 1 Output: [[12,21,16],[27,45,33],[24,39,28]]
Example 2:
Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 2 Output: [[45,45,45],[45,45,45],[45,45,45]]
Constraints:
m == mat.length
n == mat[i].length
1 <= m, n, K <= 100
1 <= mat[i][j] <= 100
Related Topics:
Dynamic Programming
// OJ: https://leetcode.com/problems/matrix-block-sum/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(1)
class Solution {
public:
vector<vector<int>> matrixBlockSum(vector<vector<int>>& A, int K) {
int M = A.size(), N = A[0].size();
for (int i = 0; i < M; ++i) {
int sum = 0;
for (int j = 0; j < N; ++j) {
sum += A[i][j];
A[i][j] = sum + (i - 1 >= 0 ? A[i - 1][j] : 0);
}
}
vector<vector<int>> ans(M, vector<int>(N));
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
int minr = max(-1, i - K - 1), maxr = min(M - 1, i + K), minc = max(-1, j - K - 1), maxc = min(N - 1, j + K);
int a = A[maxr][maxc], b = minc == -1 ? 0 : A[maxr][minc], c = minr == -1 ? 0 : A[minr][maxc], d = minr == -1 || minc == -1 ? 0 : A[minr][minc];
ans[i][j] = a - b - c + d;
}
}
return ans;
}
};