Given a square grid of integers arr
, a falling path with non-zero shifts is a choice of exactly one element from each row of arr
, such that no two elements chosen in adjacent rows are in the same column.
Return the minimum sum of a falling path with non-zero shifts.
Example 1:
Input: arr = [[1,2,3],[4,5,6],[7,8,9]] Output: 13 Explanation: The possible falling paths are: [1,5,9], [1,5,7], [1,6,7], [1,6,8], [2,4,8], [2,4,9], [2,6,7], [2,6,8], [3,4,8], [3,4,9], [3,5,7], [3,5,9] The falling path with the smallest sum is [1,5,7], so the answer is 13.
Constraints:
1 <= arr.length == arr[i].length <= 200
-99 <= arr[i][j] <= 99
Related Topics:
Dynamic Programming
Similar Questions:
// OJ: https://leetcode.com/problems/minimum-falling-path-sum-ii/
// Author: github.com/lzl124631x
// Time: O(N^2)
// Space: O(1)
class Solution {
pair<int, int> getSmallestTwo(vector<int> &A) {
auto p = make_pair(-1, -1);
for (int i = 0; i < A.size(); ++i) {
if (p.first == -1 || A[i] < A[p.first]) {
p.second = p.first;
p.first = i;
} else if (p.second == -1 || A[i] < A[p.second]) p.second = i;
}
return p;
}
public:
int minFallingPathSum(vector<vector<int>>& A) {
int N = A.size();
if (N == 1) return A[0][0];
for (int i = 1; i < N; ++i) {
auto p = getSmallestTwo(A[i - 1]);
for (int j = 0; j < N; ++j) {
A[i][j] += A[i - 1][p.first == j ? p.second : p.first];
}
}
return *min_element(A.back().begin(), A.back().end());
}
};
In case it's not allowed to change input array.
// OJ: https://leetcode.com/problems/minimum-falling-path-sum-ii/
// Author: github.com/lzl124631x
// Time: O(N^2)
// Space: O(N)
class Solution {
pair<int, int> getSmallestTwo(vector<int> &A) {
auto p = make_pair(-1, -1);
for (int i = 0; i < A.size(); ++i) {
if (p.first == -1 || A[i] < A[p.first]) {
p.second = p.first;
p.first = i;
} else if (p.second == -1 || A[i] < A[p.second]) p.second = i;
}
return p;
}
public:
int minFallingPathSum(vector<vector<int>>& A) {
int N = A.size();
if (N == 1) return A[0][0];
vector<vector<int>> dp(2, vector<int>(N));
for (int i = 0; i < N; ++i) dp[1][i] = A[0][i];
for (int i = 1; i < N; ++i) {
auto p = getSmallestTwo(dp[i % 2]);
for (int j = 0; j < N; ++j) {
dp[(i + 1) % 2][j] = A[i][j] + dp[i % 2][p.first == j ? p.second : p.first];
}
}
return *min_element(dp[N % 2].begin(), dp[N % 2].end());
}
};