Given a 2D grid
of size m x n
and an integer k
. You need to shift the grid
k
times.
In one shift operation:
- Element at
grid[i][j]
moves togrid[i][j + 1]
. - Element at
grid[i][n - 1]
moves togrid[i + 1][0]
. - Element at
grid[m - 1][n - 1]
moves togrid[0][0]
.
Return the 2D grid after applying shift operation k
times.
Example 1:
Input: grid
= [[1,2,3],[4,5,6],[7,8,9]], k = 1
Output: [[9,1,2],[3,4,5],[6,7,8]]
Example 2:
Input: grid
= [[3,8,1,9],[19,7,2,5],[4,6,11,10],[12,0,21,13]], k = 4
Output: [[12,0,21,13],[3,8,1,9],[19,7,2,5],[4,6,11,10]]
Example 3:
Input: grid
= [[1,2,3],[4,5,6],[7,8,9]], k = 9
Output: [[1,2,3],[4,5,6],[7,8,9]]
Constraints:
m == grid.length
n == grid[i].length
1 <= m <= 50
1 <= n <= 50
-1000 <= grid[i][j] <= 1000
0 <= k <= 100
Companies:
Amazon
Related Topics:
Array, Matrix, Simulation
// OJ: https://leetcode.com/problems/shift-2d-grid/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(K)
class Solution {
public:
vector<vector<int>> shiftGrid(vector<vector<int>>& A, int k) {
int M = A.size(), N = A[0].size();
k %= M * N;
if (k == 0) return A;
queue<int> q;
for (int i = 0; i < M * N + k; ++i) {
int j = i % (M * N), x = j / N, y = j % N;
if (i < k) q.push(A[x][y]);
else {
q.push(A[x][y]);
A[x][y] = q.front();
q.pop();
}
}
return A;
}
};
// OJ: https://leetcode.com/problems/shift-2d-grid/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(1)
class Solution {
public:
vector<vector<int>> shiftGrid(vector<vector<int>>& A, int k) {
int M = A.size(), N = A[0].size(), len = M * N;
k %= len;
if (k == 0) return A;
for (int i = 0, cnt = 0; cnt < len; ++i) {
int j = i, tmp = A[j / N][j % N];
do {
int next = (j + k) % len, nextVal = A[next / N][next % N];
A[next / N][next % N] = tmp;
tmp = nextVal;
j = next;
++cnt;
} while (j != i);
}
return A;
}
};