(This problem is an interactive problem.)
You may recall that an array arr
is a mountain array if and only if:
arr.length >= 3
- There exists some
i
with0 < i < arr.length - 1
such that:arr[0] < arr[1] < ... < arr[i - 1] < arr[i]
arr[i] > arr[i + 1] > ... > arr[arr.length - 1]
Given a mountain array mountainArr
, return the minimum index
such that mountainArr.get(index) == target
. If such an index
does not exist, return -1
.
You cannot access the mountain array directly. You may only access the array using a MountainArray
interface:
MountainArray.get(k)
returns the element of the array at indexk
(0-indexed).MountainArray.length()
returns the length of the array.
Submissions making more than 100
calls to MountainArray.get
will be judged Wrong Answer. Also, any solutions that attempt to circumvent the judge will result in disqualification.
Example 1:
Input: array = [1,2,3,4,5,3,1], target = 3 Output: 2 Explanation: 3 exists in the array, at index=2 and index=5. Return the minimum index, which is 2.
Example 2:
Input: array = [0,1,2,4,2,1], target = 3
Output: -1
Explanation: 3 does not exist in the array,
so we return -1.
Constraints:
3 <= mountain_arr.length() <= 104
0 <= target <= 109
0 <= mountain_arr.get(index) <= 109
Companies: Bloomberg, Apple, Uber, Google
Related Topics:
Array, Binary Search, Interactive
Similar Questions:
- Peak Index in a Mountain Array (Medium)
- Minimum Number of Removals to Make Mountain Array (Hard)
- Find Good Days to Rob the Bank (Medium)
Hints:
- Based on whether A[i-1] < A[i] < A[i+1], A[i-1] < A[i] > A[i+1], or A[i-1] > A[i] > A[i+1], we are either at the left side, peak, or right side of the mountain. We can binary search to find the peak. After finding the peak, we can binary search two more times to find whether the value occurs on either side of the peak.
// OJ: https://leetcode.com/problems/find-in-mountain-array
// Author: github.com/lzl124631x
// Time: O(logN)
// Space: O(logN)
class Solution {
public:
int findInMountainArray(int target, MountainArray &A) {
int len = A.length();
unordered_map<int, int> m;
auto get = [&](int i) {
return m.count(i) ? m[i] : (m[i] = A.get(i));
};
function<int(int, int, bool)> findInMonoArray;
function<int(int, int)> findInMountainArray = [&](int L, int R) {
if (L > R) return -1;
if (L == R || L == R - 1) return get(L) == target ? L : (L == R - 1 && get(R) == target ? R : -1);
int lv = get(L), rv = get(R), M = (L + R) / 2, a = get(M), b = get(M + 1);
if (a < b) {
int x = findInMonoArray(L, M + 1, true);
return x != -1 ? x : findInMountainArray(M + 2, R);
}
int x = findInMountainArray(L, M - 1);
return x != -1 ? x : findInMonoArray(M, R, false);
};
findInMonoArray = [&](int L, int R, bool increasing) {
if (L > R) return -1;
while (L <= R) {
int M = (L + R) / 2, mid = get(M);
if (mid == target) return M;
if ((increasing && mid > target) || (!increasing && mid < target)) R = M - 1;
else L = M + 1;
}
return -1;
};
return findInMountainArray(0, len - 1);
}
};
// OJ: https://leetcode.com/problems/find-in-mountain-array/
// Author: github.com/lzl124631x
// Time: O(logN)
// Space: O(1)
class Solution {
int binarySearch(int target, MountainArray &A, int L, int R, int dir) {
while (L <= R) {
int M = (L + R) / 2, val = A.get(M);
if (val == target) return M;
bool left = (dir == 1 && val < target) || (dir == -1 && val > target);
if (left) L = M + 1;
else R = M - 1;
}
return -1;
}
int findTop(MountainArray &A, int N) {
int L = 0, R = N - 1;
while (L <= R) {
int M = (L + R) / 2, left = M - 1 >= 0 ? A.get(M - 1) : INT_MIN, val = A.get(M), right = M + 1 < N ? A.get(M + 1) : INT_MIN;
if (val > left && val > right) return M;
else if (val < left) R = M - 1;
else L = M + 1;
}
return -1;
}
public:
int findInMountainArray(int target, MountainArray &A) {
int N = A.length(), top = findTop(A, N), a = binarySearch(target, A, 0, top, 1);
return a != -1 ? a : binarySearch(target, A, top + 1, N - 1, -1);
}
};