Given the root
of a binary tree, return the bottom-up level order traversal of its nodes' values. (i.e., from left to right, level by level from leaf to root).
Example 1:
Input: root = [3,9,20,null,null,15,7] Output: [[15,7],[9,20],[3]]
Example 2:
Input: root = [1] Output: [[1]]
Example 3:
Input: root = [] Output: []
Constraints:
- The number of nodes in the tree is in the range
[0, 2000]
. -1000 <= Node.val <= 1000
Related Topics:
Tree, Breadth-First Search, Binary Tree
Similar Questions:
// OJ: https://leetcode.com/problems/binary-tree-level-order-traversal-ii/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(N)
class Solution {
public:
vector<vector<int>> levelOrderBottom(TreeNode* root) {
if (!root) return {};
vector<vector<int>> ans;
queue<TreeNode*> q;
q.push(root);
while (q.size()) {
int cnt = q.size();
ans.emplace_back();
while (cnt--) {
root = q.front();
q.pop();
ans.back().push_back(root->val);
if (root->left) q.push(root->left);
if (root->right) q.push(root->right);
}
}
reverse(begin(ans), end(ans));
return ans;
}
};
// OJ: https://leetcode.com/problems/binary-tree-level-order-traversal-ii/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(H)
class Solution {
vector<vector<int>> ans;
void dfs(TreeNode *root, int lv) {
if (!root) return;
if (lv >= ans.size()) ans.emplace_back();
ans[lv].push_back(root->val);
dfs(root->left, lv + 1);
dfs(root->right, lv + 1);
}
public:
vector<vector<int>> levelOrderBottom(TreeNode* root) {
dfs(root, 0);
reverse(begin(ans), end(ans));
return ans;
}
};