forked from ranjaykrishna/SST
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
110 lines (96 loc) · 3.96 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import torch
import torch.nn as nn
class SST(nn.Module):
"""
Container module with 1D convolutions to generate proposals
"""
def __init__(self,
video_dim=500,
hidden_dim=512,
dropout=0,
W=64,
K=64,
rnn_type='GRU',
rnn_num_layers=2,
rnn_dropout=0.2,
):
super(SST, self).__init__()
self.rnn = getattr(nn, rnn_type)(video_dim, hidden_dim, rnn_num_layers, batch_first=True, dropout=rnn_dropout)
self.scores = torch.nn.Linear(hidden_dim, K)
# Saving arguments
self.video_dim = video_dim
self.W = W
self.rnn_type = rnn_type
self.rnn_num_layers = rnn_num_layers
self.rnn_dropout = rnn_dropout
self.K = K
def eval(self):
self.rnn.dropout = 0
def train(self):
self.rnn.dropout = self.rnn_dropout
def forward(self, features):
N, T, _ = features.size()
rnn_output, _ = self.rnn(features)
rnn_output = rnn_output.contiguous()
rnn_output = rnn_output.view(rnn_output.size(0) * rnn_output.size(1), rnn_output.size(2))
outputs = torch.sigmoid(self.scores(rnn_output))
return outputs.view(N, T, self.K)
def slow_compute_loss(self, outputs, masks, labels):
"""
Used mainly for checking the actual loss function
"""
labels = torch.autograd.Variable(labels)
masks = torch.autograd.Variable(masks)
outputs = outputs.view(-1, self.W, self.K)
loss = 0.0
print outputs.size()
for n in range(outputs.size(0)):
for t in range(self.W):
w1 = torch.sum(outputs[n, t, :]) / outputs.numel()
w0 = 1.0 - w1
for j in range(self.K):
loss -= w1 * labels[n, t, j] * torch.log(outputs[n, t, j])
loss -= w0 * (1.0 - labels[n, t, j]) * torch.log(1.0 - outputs[n, t, j])
print n, loss
return loss
def compute_loss_with_BCE(self, outputs, masks, labels, w1):
"""
Uses weighted BCE to calculate loss
"""
w1 = torch.FloatTensor(w1).type_as(outputs.data)
w0 = 1. - w1
labels = labels.mul(masks)
weights = labels.mul(w0.expand(labels.size())) + (1. - labels).mul(w1.expand(labels.size()))
weights = weights.view(-1)
labels = torch.autograd.Variable(labels.view(-1))
masks = torch.autograd.Variable(masks.view(-1))
outputs = outputs.view(-1).mul(masks)
criterion = torch.nn.BCELoss(weight=weights)
loss = criterion(outputs, labels)
return loss
def compute_loss(self, outputs, masks, labels):
"""
Our implementation of weighted BCE loss.
"""
labels = labels.view(-1)
masks = masks.view(-1)
outputs = outputs.view(-1)
# Generate the weights
ones = torch.sum(labels)
total = labels.nelement()
weights = torch.FloatTensor(outputs.size()).type_as(outputs.data)
weights[labels.long() == 1] = 1.0 - ones / total
weights[labels.long() == 0] = ones / total
weights = weights.view(weights.size(0), 1).expand(weights.size(0), 2)
# Generate the log outputs
outputs = outputs.clamp(min=1e-8)
log_outputs = torch.log(outputs)
neg_outputs = 1.0 - outputs
neg_outputs = neg_outputs.clamp(min=1e-8)
neg_log_outputs = torch.log(neg_outputs)
all_outputs = torch.cat((log_outputs.view(-1, 1), neg_log_outputs.view(-1, 1)), 1)
all_values = all_outputs.mul(torch.autograd.Variable(weights))
all_labels = torch.autograd.Variable(torch.cat((labels.view(-1, 1), (1.0 - labels).view(-1, 1)), 1))
all_masks = torch.autograd.Variable(torch.cat((masks.view(-1, 1), masks.view(-1, 1)), 1))
loss = -torch.sum(all_values.mul(all_labels).mul(all_masks)) / outputs.size(0)
return loss