-
Notifications
You must be signed in to change notification settings - Fork 8
/
conv_lfads.py
282 lines (233 loc) · 12.4 KB
/
conv_lfads.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import torch
import torch.nn as nn
from lfads import LFADS_Net
import time
import pdb
class Conv3d_LFADS_Net(nn.Module):
def __init__(self, input_dims = (100, 128, 128), channel_dims = (16, 32),
conv_dense_size = 64, factor_size = 4,
g_encoder_size = 64, c_encoder_size = 64,
g_latent_size = 64, u_latent_size = 1,
controller_size = 64, generator_size = 64,
prior = {'g0' : {'mean' : {'value': 0.0, 'learnable' : True},
'var' : {'value': 0.1, 'learnable' : False}},
'u' : {'mean' : {'value': 0.0, 'learnable' : False},
'var' : {'value': 0.1, 'learnable' : True},
'tau' : {'value': 10, 'learnable' : True}}},
clip_val=5.0, max_norm = 200, lfads_dropout=0.0, conv_dropout=0.0,
do_normalize_factors=True, factor_bias = False, device='cpu'):
super(Conv3d_LFADS_Net, self).__init__()
self.factor_size = factor_size
self.g_encoder_size = g_encoder_size
self.c_encoder_size = c_encoder_size
self.g_latent_size = g_latent_size
self.u_latent_size = u_latent_size
self.controller_size = controller_size
self.generator_size = generator_size
self.clip_val = clip_val
self.max_norm = max_norm
self.do_normalize_factors = do_normalize_factors
self.factor_bias = factor_bias
self.device= device
self.input_dims = input_dims
self.channel_dims = (1,) + channel_dims
self.conv_layers = nn.ModuleList()
self.conv_dense_size = conv_dense_size
layer_dims = self.input_dims
for n in range(1, len(self.channel_dims)):
self.conv_layers.add_module('{}{}'.format('block', n),
Conv3d_Block_1step(input_dims = layer_dims,
in_f = self.channel_dims[n-1],
out_f= self.channel_dims[n]))
layer_dims = getattr(self.conv_layers, '{}{}'.format('block', n)).get_output_dims()
self.deconv_layers = nn.ModuleList()
for n in reversed(range(1, len(self.channel_dims))):
self.deconv_layers.add_module('{}{}'.format('block', n),
ConvTranspose3d_Block_1step(in_f = self.channel_dims[n],
out_f= self.channel_dims[n-1]))
# Placeholder
self.conv_output_size = int(torch._np.prod(layer_dims[1:]) * self.channel_dims[-1])
self.conv_dense_size = self.conv_dense_size
self.conv_dropout = nn.Dropout(conv_dropout)
self.conv_dense_1 = nn.Linear(in_features= self.conv_output_size,
out_features= self.conv_dense_size)
self.conv_dense_2 = nn.Linear(in_features= self.factor_size,
out_features = self.conv_output_size)
# self.lfads_param = dict()
print(self.device)
print(torch.cuda.device_count())
self.lfads = LFADS_Net(input_size= self.conv_dense_size,
g_encoder_size=self.g_encoder_size,
c_encoder_size=self.c_encoder_size,
g_latent_size=self.g_latent_size,
u_latent_size=self.u_latent_size,
controller_size=self.controller_size,
generator_size=self.generator_size,
factor_size=self.factor_size,
prior=prior,
clip_val=self.clip_val,
dropout=lfads_dropout,
max_norm=self.max_norm,
do_normalize_factors=self.do_normalize_factors,
factor_bias=self.factor_bias,
device= self.device)
self.register_buffer('g_posterior_mean',None)
self.register_buffer('g_posterior_logvar',None)
self.register_buffer('g_prior_mean',self.lfads.g_prior_mean)
self.register_buffer('g_prior_logvar',self.lfads.g_prior_logvar)
# self.lfads_param['g_posterior_mean'] = self.lfads.g_posterior_mean
# self.lfads_param['g_posterior_logvar'] = self.lfads.g_posterior_logvar
# self.lfads_param['g_prior_mean'] = self.lfads.g_prior_mean
# self.lfads_param['g_prior_logvar'] = self.lfads.g_prior_logvar
def forward(self, x):
frame_per_block = 10
batch_size, num_ch, seq_len, w, h = x.shape
num_blocks = int(seq_len/frame_per_block)
x = x.view(batch_size, num_ch, num_blocks, frame_per_block, w, h).contiguous()
x = x.permute(0, 2, 1, 3, 4, 5).contiguous()
x = x.view(batch_size * num_blocks, num_ch, frame_per_block, w, h).contiguous()
Ind = list()
conv_tic = time.time()
for n, layer in enumerate(self.conv_layers):
x, ind1 = layer(x)
Ind.append(ind1)
conv_toc = time.time()
num_out_ch = x.shape[1]
w_out = x.shape[3]
h_out = x.shape[4]
x = x.view(batch_size, num_blocks, num_out_ch, frame_per_block, w_out, h_out).contiguous()
x = x.permute(0, 2, 1, 3, 4, 5).contiguous()
x = x.view(batch_size, num_out_ch, seq_len, w_out, h_out).contiguous()
x = x.permute(0, 2, 1, 3, 4)
x = x.reshape(x.shape[0],x.shape[1],-1)
# pdb.set_trace()
x = self.conv_dense_1(x.view(batch_size, seq_len, w_out * h_out * num_out_ch))
x = x.permute(1, 0, 2)
lfads_tic = time.time()
factors, gen_inputs = self.lfads(x)
lfads_toc = time.time()
# print('conv t: ',conv_toc - conv_tic,' lfads t: ',lfads_toc - lfads_tic)
x = factors
x = x.permute(1, 0, 2)
x = self.conv_dense_2(x)
# call LFADS here:
# x should be reshaped for LFADS [time x batch x cells]:
#
# LFADS output should be also reshaped back for the conv decoder
x = x.reshape(x.shape[0], x.shape[1], num_out_ch, w_out, h_out)
x = x.permute(0, 2, 1, 3, 4)
x = x.view(batch_size, num_out_ch, num_blocks, frame_per_block, w_out, h_out).contiguous()
x = x.permute(0, 2, 1, 3, 4, 5).contiguous()
x = x.view(batch_size * num_blocks, num_out_ch, frame_per_block, w_out, h_out).contiguous()
for layer, ind in list(zip(self.deconv_layers, reversed(Ind))):
x = layer(x, ind)
x = x.view(batch_size, num_blocks, 1, frame_per_block, w, h).contiguous()
x = x.permute(0, 2, 1, 3, 4, 5)
x = x.view(batch_size, 1, seq_len, w, h)
g_posterior = dict()
g_posterior['mean'] = self.lfads.g_posterior_mean
g_posterior['logvar'] = self.lfads.g_posterior_logvar
recon = {'data' : x}
return recon, (factors, gen_inputs)
def normalize_factors(self):
self.lfads.normalize_factors()
def change_parameter_grad_status(self, step, optimizer, scheduler, loading_checkpoint=False):
return optimizer, scheduler
class _ConvNd_Block(nn.ModuleList):
def __init__(self, input_dims):
super(_ConvNd_Block, self).__init__()
self.input_dims = input_dims
def forward(self, x):
ind = None
for layer in self:
if nn.modules.pooling._MaxPoolNd in type(layer).__bases__ and layer.return_indices:
x, ind = layer(x)
else:
x = layer(x)
return x, ind
def get_output_dims(self):
def layer_out_dim(in_dim, layer):
padding = layer.padding
kernel_size = layer.kernel_size
dilation = layer.dilation
stride = layer.stride
def out_dim(in_dim, padding, dilation, kernel_dim, stride):
return int((in_dim + 2 * padding - dilation * (kernel_dim - 1) - 1)/stride + 1)
return tuple([out_dim(i,p,d,k,s) for i,p,d,k,s in zip(in_dim,
padding,
dilation,
kernel_size,
stride)])
dims = self.input_dims
for m in self:
parents = type(m).__bases__
if nn.modules.conv._ConvNd in parents or nn.modules.pooling._MaxPoolNd in parents:
dims = layer_out_dim(dims, m)
return dims
class Conv3d_Block_2step(_ConvNd_Block):
def __init__(self, in_f, out_f,
kernel_size=(3, 3, 3),
dilation=(1, 1, 1),
padding=(1, 1, 1),
stride=(1, 1, 1),
pool_size=(1, 4, 4),
input_dims=(100, 100, 100)):
super(Conv3d_Block_2step, self).__init__(input_dims)
self.add_module('conv1', nn.Conv3d(in_f, out_f,
kernel_size= kernel_size,
padding= padding,
dilation = dilation,
stride= stride))
self.add_module('relu1', nn.ReLU())
self.add_module('conv2', nn.Conv3d(out_f, out_f,
kernel_size= kernel_size,
padding= padding,
dilation= dilation,
stride = stride))
self.add_module('pool1', nn.MaxPool3d(kernel_size= pool_size,
stride= pool_size,
padding=(0, 0, 0),
dilation=(1, 1, 1),
return_indices= True))
self.add_module('relu2', nn.ReLU())
self.output_dims = self.get_output_dims()
class Conv3d_Block_1step(_ConvNd_Block):
def __init__(self, in_f, out_f,
kernel_size=(3, 3, 3),
dilation=(1, 1, 1),
padding=(1, 1, 1),
stride=(1, 1, 1),
pool_size=(1, 4, 4),
input_dims=(100, 100, 100)):
super(Conv3d_Block_1step, self).__init__(input_dims)
self.add_module('conv1', nn.Conv3d(in_f, out_f,
kernel_size= kernel_size,
padding= padding,
dilation = dilation,
stride= stride))
self.add_module('relu1', nn.ReLU())
self.add_module('pool1', nn.MaxPool3d(kernel_size= pool_size,
stride= pool_size,
padding=(0, 0, 0),
dilation=(1, 1, 1),
return_indices= True))
class _ConvTransposeNd_Block(nn.ModuleList):
def __init__(self):
super(_ConvTransposeNd_Block, self).__init__()
def forward(self, x, ind):
for layer in self:
if nn.modules.pooling._MaxUnpoolNd in type(layer).__bases__:
x = layer(x, ind)
else:
x = layer(x)
return x
class ConvTranspose3d_Block_1step(_ConvTransposeNd_Block):
def __init__(self, in_f, out_f):
super(ConvTranspose3d_Block_1step, self).__init__()
self.add_module('unpool1', nn.MaxUnpool3d(kernel_size=(1,4,4)))
self.add_module('deconv1', nn.ConvTranspose3d(in_channels= in_f,
out_channels= out_f,
kernel_size= 3,
padding= 1,
dilation= (1,1,1)))
self.add_module('relu1', nn.ReLU())