-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlane.py
157 lines (130 loc) · 4.11 KB
/
lane.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# -*- coding: UTF-8 -*-
#各种模块导入
import cv2
import numpy as np
import cv2.cv as cv
import math
import time
#读取图片
def readp():
img1 = cv2.imread('image1.jpg')
return img1
#roi函数
def roi_mask(img, vertices):#读入canny轮廓图
mask = np.zeros_like(img)
mask_color = 255 #白色线
cv2.fillPoly(mask, vertices, mask_color)#白色填充
masked_img = cv2.bitwise_and(img, mask)#加和
return masked_img
def tc(img,lines):
k=[]
i=0
for line in lines:
q=0
for x1, y1, x2, y2 in line:
x1=float (x1)
x2=float (x2)
y1=float (y1)
y2=float (y2)
i=i+1
if (x1==0 and x2==0) or x1==x2 :
picture()
p=(y2 - y1) / (x2 - x1)
q=q+p
k.append(p)
k1=q/i
print '斜率总和',q,'平均斜率',k1
#标准霍夫变换参数全局变量
rho = 1
theta = np.pi / 180
threshold = 15
min_line_length = 40
max_line_gap = 20
#霍夫直线函数
def draw_lines(img, lines, color=[0,0,255], thickness=3):#画红线
for line in lines:
for x1, y1, x2, y2 in line:
cv2.line(img, (x1, y1), (x2, y2), color, thickness)
#print x1,x2,y1,y2
def hough_lines(img, rho, theta, threshold, #霍夫变换
min_line_len, max_line_gap):
lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]),
minLineLength=min_line_len,
maxLineGap=max_line_gap)
line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
draw_lines(line_img, lines)
cv2.imwrite("line_img.jpg",line_img)
#tc(line_img, lines)
return line_img
#画拟合直线函数
def lines2():
im=cv.LoadImage('roi_edges.jpg', cv.CV_LOAD_IMAGE_GRAYSCALE)
pi = math.pi
x = 0
dst = cv.CreateImage(cv.GetSize(im), 8, 1)
cv.Canny(im, dst, 200, 200)
cv.Threshold(dst, dst, 100, 255, cv.CV_THRESH_BINARY)
color_dst_standard = cv.CreateImage(cv.GetSize(im), 8, 3)
cv.CvtColor(im, color_dst_standard, cv.CV_GRAY2BGR)#Create output image in RGB to put red lines
lines = cv.HoughLines2(dst, cv.CreateMemStorage(0), cv.CV_HOUGH_STANDARD, 1, pi/100, 71, 0, 0)
klsum=0
klaver=0
krsum=0
kraver=0
#global k
#k=0
for (rho, theta) in lines[:100]:
kl=[]
kr=[]
a = math.cos(theta)
b = math.sin(theta)
x0 = a * rho
y0 = b * rho
pt1 = (cv.Round(x0 + 1000*(-b)), cv.Round(y0 + 1000*(a)))
pt2 = (cv.Round(x0 - 1000*(-b)), cv.Round(y0 - 1000*(a)))
k=((y0 - 1000*(a))- (y0 + 1000*(a)))/((x0 - 1000*(-b))-(x0 +1000*(-b)))
if abs(k)<0.4:
pass
elif k>0:
kr.append(k)
len_kr=len(kr)
for i in kr:
krsum=krsum+i
kraver=krsum/len_kr
cv.Line(color_dst_standard, pt1, pt2, cv.CV_RGB(255, 0, 0), 2, 4)
elif k<0:
kr.append(k)
kl.append(k)
len_kl=len(kl)
for i in kl:
klsum=klsum+i
klaver=klsum/len_kl
cv.Line(color_dst_standard, pt1, pt2, cv.CV_RGB(255, 0, 0), 2, 4)
#print k
# cv.Line(color_dst_standard, pt1, pt2, cv.CV_RGB(255, 0, 0), 2, 4)
cv.SaveImage('lane.jpg',color_dst_standard)
print '左车道平均斜率:',klaver ,' 右车道平均斜率:',kraver
cv.ShowImage("Hough Standard", color_dst_standard)
cv.WaitKey(0)
#图片处理函数
def picture():
img2=readp()
imgGray1 = cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY)
cv2.imwrite("gray.jpg", imgGray1)
imgGray =cv2.equalizeHist( imgGray1 )
cv2.imwrite("dst.jpg", imgGray)
blur_ksize = 5 # Gaussian blur kernel size
blur_gray = cv2.GaussianBlur(imgGray1, (blur_ksize, blur_ksize), 0, 0)
canny_lthreshold = 0 # Canny edge detection low threshold
canny_hthreshold = 70 # Canny edge detection high threshold
edges = cv2.Canny(blur_gray,canny_lthreshold,canny_hthreshold)
cv2.imwrite("edges.jpg", edges)
roi_vtx = np.array([[(0, 300), (140,240), #四点画区域shape(0)为高
(600, 290), (img2.shape[1], img2.shape[0])]])
roi_edges = roi_mask(edges, roi_vtx)#切割图像
cv2.imwrite("roi_edges.jpg", roi_edges)
lines2()
line1_img = hough_lines(roi_edges, rho, theta, threshold,
min_line_length, max_line_gap)
cv2.imwrite("line_img.jpg",line1_img)
picture()