forked from prajwalsingh/EEG2Image
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_generation.py
171 lines (142 loc) · 6.37 KB
/
test_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import tensorflow as tf
# from utils import vis, load_batch#, load_data
from utils import load_complete_data, show_batch_images
from model import DCGAN, dist_train_step#, train_step
from tqdm import tqdm
import os
import shutil
import pickle
from glob import glob
from natsort import natsorted
import wandb
import numpy as np
import cv2
from lstm_kmean.model import TripleNet
import math
# from eval_utils import get_inception_score
tf.random.set_seed(45)
np.random.seed(45)
clstoidx = {}
idxtocls = {}
for idx, item in enumerate(natsorted(glob('data/images/test/*')), start=0):
clsname = os.path.basename(item)
clstoidx[clsname] = idx
idxtocls[idx] = clsname
image_paths = natsorted(glob('data/images/test/*/*'))
imgdict = {}
for path in image_paths:
key = path.split(os.path.sep)[-2]
if key in imgdict:
imgdict[key].append(path)
else:
imgdict[key] = [path]
# wandb.init(project='DCGAN_DiffAug_EDDisc_imagenet_128', entity="prajwal_15")
os.environ['TF_XLA_FLAGS'] = '--tf_xla_enable_xla_devices'
os.environ["CUDA_DEVICE_ORDER"]= "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]= '1'
if __name__ == '__main__':
n_channels = 14
n_feat = 128
batch_size = 128
test_batch_size = 1
n_classes = 10
# data_cls = natsorted(glob('data/thoughtviz_eeg_data/*'))
# cls2idx = {key.split(os.path.sep)[-1]:idx for idx, key in enumerate(data_cls, start=0)}
# idx2cls = {value:key for key, value in cls2idx.items()}
with open('data/eeg/image/data.pkl', 'rb') as file:
data = pickle.load(file, encoding='latin1')
train_X = data['x_train']
train_Y = data['y_train']
test_X = data['x_test']
test_Y = data['y_test']
print(test_X.shape, test_Y.shape)
test_path = []
for X, Y in zip(test_X, test_Y):
test_path.append(np.random.choice(imgdict[idxtocls[np.argmax(Y)]], size=(1,) ,replace=True)[0])
test_batch = load_complete_data(test_X, test_Y, test_path, batch_size=test_batch_size)
X, Y, I = next(iter(test_batch))
# latent_label = Y[:16]
print(X.shape, Y.shape, I.shape)
gpus = tf.config.list_physical_devices('GPU')
mirrored_strategy = tf.distribute.MirroredStrategy(devices=['/GPU:1'],
cross_device_ops=tf.distribute.HierarchicalCopyAllReduce())
n_gpus = mirrored_strategy.num_replicas_in_sync
# print(n_gpus)
# batch_size = 64
latent_dim = 128
input_res = 128
# print(latent_Y)
# latent_Y = latent_Y[:16]
# print
triplenet = TripleNet(n_classes=n_classes)
opt = tf.keras.optimizers.Adam(learning_rate=3e-4)
triplenet_ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=triplenet, optimizer=opt)
triplenet_ckptman = tf.train.CheckpointManager(triplenet_ckpt, directory='lstm_kmean/experiments/best_ckpt', max_to_keep=5000)
triplenet_ckpt.restore(triplenet_ckptman.latest_checkpoint)
print('TripletNet restored from the latest checkpoint: {}'.format(triplenet_ckpt.step.numpy()))
_, latent_Y = triplenet(X, training=False)
print('Extracting test eeg features:')
# test_eeg_features = np.array([np.squeeze(triplenet(E, training=False)[1].numpy()) for E, Y, X in tqdm(test_batch)])
# test_eeg_y = np.array([Y.numpy()[0] for E, Y, X in tqdm(test_batch)])
test_image_count = 50000 #// n_classes
# test_labels = np.tile(np.expand_dims(np.arange(0, 10), axis=-1), [1, test_image_count//n_classes])
# test_labels = np.sort(test_labels.ravel())
test_eeg_cls = {}
for E, Y, X in tqdm(test_batch):
Y = Y.numpy()[0]
if Y not in test_eeg_cls:
# print(E.shape)
test_eeg_cls[Y] = [np.squeeze(triplenet(E, training=False)[1].numpy())]
else:
test_eeg_cls[Y].append(np.squeeze(triplenet(E, training=False)[1].numpy()))
for _ in range(n_classes):
test_eeg_cls[_] = np.array(test_eeg_cls[_])
print(test_eeg_cls[_].shape)
for cl in range(n_classes):
N = test_eeg_cls[cl].shape[0]
per_cls_image = int(math.ceil((test_image_count//n_classes) / N))
test_eeg_cls[cl] = np.expand_dims(test_eeg_cls[cl], axis=1)
test_eeg_cls[cl] = np.tile(test_eeg_cls[cl], [1, per_cls_image, 1])
test_eeg_cls[cl] = np.reshape(test_eeg_cls[cl], [-1, latent_dim])
# print(test_eeg_cls[cl].shape)
# test_image_count = test_image_count // n_classes
# print(test_eeg_features.shape, test_eeg_y.shape)
lr = 3e-4
with mirrored_strategy.scope():
model = DCGAN()
model_gopt = tf.keras.optimizers.Adam(learning_rate=lr, beta_1=0.2, beta_2=0.5)
model_copt = tf.keras.optimizers.Adam(learning_rate=lr, beta_1=0.2, beta_2=0.5)
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=model, gopt=model_gopt, copt=model_copt)
ckpt_manager = tf.train.CheckpointManager(ckpt, directory='experiments/best_ckpt', max_to_keep=300)
ckpt.restore(ckpt_manager.latest_checkpoint).expect_partial()
# print(ckpt.step.numpy())
START = int(ckpt.step.numpy())# // len(train_batch) + 1
# EPOCHS = 300#670#66
# model_freq = 355#178#355#178#200#40
# t_visfreq = 355#178#355#178#200#1500#40
# latent = tf.random.uniform(shape=(16, latent_dim), minval=-0.2, maxval=0.2)
# latent = tf.concat([latent, latent_Y[:16]], axis=-1)
# print(latent_Y.shape, latent.shape)
if ckpt_manager.latest_checkpoint:
print('Restored from last checkpoint epoch: {0}'.format(START))
for cl in range(n_classes):
test_noise = np.random.uniform(size=(test_eeg_cls[cl].shape[0],128), low=-1, high=1)
noise_lst = np.concatenate([test_noise, test_eeg_cls[cl]], axis=-1)
save_path = 'experiments/finalversion/{}/{}'.format(210, cl)
if not os.path.isdir(save_path):
os.makedirs(save_path)
for idx, noise in enumerate(tqdm(noise_lst)):
X = mirrored_strategy.run(model.gen, args=(tf.expand_dims(noise, axis=0),))
X = cv2.cvtColor(tf.squeeze(X).numpy(), cv2.COLOR_RGB2BGR)
X = np.uint8(np.clip((X*0.5 + 0.5)*255.0, 0, 255))
cv2.imwrite(save_path+'/{}_{}.jpg'.format(cl, idx), X)
# # eeg_feature_vectors_test = np.array([test_eeg_features[np.random.choice(np.where(test_eeg_y == test_label)[0], size=(1,))[0]] for test_label in test_labels])
# # latent_var = np.concatenate([test_noise, eeg_feature_vectors_test], axis=-1)
# # print(test_noise.shape, eeg_feature_vectors_test.shape, latent_var.shape)
# # for idx, noise in enumerate(tqdm(latent_var)):
# # X = mirrored_strategy.run(model.gen, args=(tf.expand_dims(noise, axis=0),))
# # X = cv2.cvtColor(tf.squeeze(X).numpy(), cv2.COLOR_RGB2BGR)
# # X = np.uint8(np.clip((X*0.5 + 0.5)*255.0, 0, 255))
# # cv2.imwrite(save_path+'/{}_{}.jpg'.format(test_labels[idx], idx), X)
# # print(X.shape)
# # break