forked from prajwalsingh/EEG2Image
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_utils.py
102 lines (91 loc) · 3.44 KB
/
eval_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# https://github.com/ptirupat/ThoughtViz
import os
import os.path
import tarfile
import numpy as np
from six.moves import urllib
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import math
import sys
from tensorflow.keras.utils import to_categorical
from tqdm import tqdm
os.environ['TF_XLA_FLAGS'] = '--tf_xla_enable_xla_devices'
os.environ["CUDA_DEVICE_ORDER"]= "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]= '0'
MODEL_DIR = 'tmp/imagenet'
DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
softmax = None
# Call this function with list of images. Each of elements should be a
# numpy array with values ranging from 0 to 255.
def get_inception_score(images, splits=10):
assert(type(images) == list)
assert(type(images[0]) == np.ndarray)
assert(len(images[0].shape) == 3)
assert(np.max(images[0]) > 10)
assert(np.min(images[0]) >= 0.0)
inps = []
for img in images:
img = img.astype(np.float32)
inps.append(np.expand_dims(img, 0))
bs = 1
with tf.Session() as sess:
preds = []
n_batches = int(math.ceil(float(len(inps)) / float(bs)))
for i in tqdm(range(n_batches)):
# sys.stdout.write(".")
# sys.stdout.flush()
inp = inps[(i * bs):min((i + 1) * bs, len(inps))]
inp = np.concatenate(inp, 0)
pred = sess.run(softmax, {'ExpandDims:0': inp})
preds.append(pred)
preds = np.concatenate(preds, 0)
scores = []
for i in range(splits):
part = preds[(i * preds.shape[0] // splits):((i + 1) * preds.shape[0] // splits), :]
kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0)))
kl = np.mean(np.sum(kl, 1))
scores.append(np.exp(kl))
return np.mean(scores), np.std(scores)
# This function is called automatically.
def _init_inception():
global softmax
if not os.path.exists(MODEL_DIR):
os.makedirs(MODEL_DIR)
filename = DATA_URL.split('/')[-1]
filepath = os.path.join(MODEL_DIR, filename)
# if not os.path.exists(filepath):
# def _progress(count, block_size, total_size):
# sys.stdout.write('\r>> Downloading %s %.1f%%' % (
# filename, float(count * block_size) / float(total_size) * 100.0))
# sys.stdout.flush()
# filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
# print()
# statinfo = os.stat(filepath)
# print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
tarfile.open(filepath, 'r:gz').extractall(MODEL_DIR)
with tf.compat.v2.io.gfile.GFile(os.path.join(
MODEL_DIR, 'classify_image_graph_def.pb'), 'rb') as f:
graph_def = tf.compat.v1.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
# Works with an arbitrary minibatch size.
with tf.Session() as sess:
pool3 = sess.graph.get_tensor_by_name('pool_3:0')
ops = pool3.graph.get_operations()
for op_idx, op in enumerate(ops):
for o in op.outputs:
shape = o.get_shape()
shape = [s.value for s in shape]
new_shape = []
for j, s in enumerate(shape):
if s == 1 and j == 0:
new_shape.append(None)
else:
new_shape.append(s)
o.set_shape(tf.TensorShape(new_shape))
w = sess.graph.get_operation_by_name("softmax/logits/MatMul").inputs[1]
logits = tf.matmul(tf.squeeze(pool3, [1, 2]), w)
softmax = tf.nn.softmax(logits)
if softmax is None:
_init_inception()