-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmeasure.py
323 lines (275 loc) · 9.54 KB
/
measure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import os
import time
import os.path as osp
import numpy as np
import torch
from torchvision import transforms
import logging
from torch.utils import data
from PIL import Image
os.environ["CUDA_VISIBLE_DEVICES"] = '2'
class EvalDataset(data.Dataset):
def __init__(self, img_root, label_root):
lst_label = sorted(os.listdir(label_root))
lst_pred = sorted(os.listdir(img_root))
lst = []
for name in lst_label:
if name in lst_pred:
lst.append(name)
self.image_path = list(map(lambda x: os.path.join(img_root, x), lst))
self.label_path = list(map(lambda x: os.path.join(label_root, x), lst))
def __getitem__(self, item):
pred = Image.open(self.image_path[item]).convert('L')
gt = Image.open(self.label_path[item]).convert('L')
if pred.size != gt.size:
pred = pred.resize(gt.size, Image.BILINEAR)
return pred, gt
def __len__(self):
return len(self.image_path)
def Eval_mae(loader,cuda=True):
avg_mae, img_num, total = 0.0, 0.0, 0.0
with torch.no_grad():
trans = transforms.Compose([transforms.ToTensor()])
for pred, gt in loader:
if cuda:
pred = trans(pred).cuda()
gt = trans(gt).cuda()
else:
pred = trans(pred)
gt = trans(gt)
mea = torch.abs(pred - gt).mean()
if mea == mea: # for Nan
avg_mae += mea
img_num += 1.0
avg_mae /= img_num
return avg_mae
def Eval_fmeasure(loader,cuda=True):
beta2 = 0.3
avg_f, img_num = 0.0, 0.0
with torch.no_grad():
trans = transforms.Compose([transforms.ToTensor()])
for pred, gt in loader:
if cuda:
pred = trans(pred).cuda()
gt = trans(gt).cuda()
else:
pred = trans(pred)
gt = trans(gt)
prec, recall = eval_pr(pred, gt, 255)
f_score = (1 + beta2) * prec * recall / (beta2 * prec + recall)
f_score[f_score != f_score] = 0 # for Nan
avg_f += f_score
img_num += 1.0
score = avg_f / img_num
return score.max()
def Eval_Emeasure(loader,cuda=True):
avg_e, img_num = 0.0, 0.0
with torch.no_grad():
trans = transforms.Compose([transforms.ToTensor()])
scores = torch.zeros(255)
if cuda:
scores = scores.cuda()
for pred, gt in loader:
if cuda:
pred = trans(pred).cuda()
gt = trans(gt).cuda()
else:
pred = trans(pred)
gt = trans(gt)
scores += eval_e(pred, gt, 255)
img_num += 1.0
scores /= img_num
# return scores.max()
return scores.mean()
def Eval_Smeasure(loader,cuda=True):
alpha, avg_q, img_num = 0.5, 0.0, 0.0
with torch.no_grad():
trans = transforms.Compose([transforms.ToTensor()])
for pred, gt in loader:
if cuda:
pred = trans(pred).cuda()
gt = trans(gt).cuda()
else:
pred = trans(pred)
gt = trans(gt)
y = gt.mean()
if y == 0:
x = pred.mean()
Q = 1.0 - x
elif y == 1:
x = pred.mean()
Q = x
else:
gt[gt >= 0.5] = 1
gt[gt < 0.5] = 0
Q = alpha * S_object(pred, gt) + (1 - alpha) * S_region(pred, gt)
if Q.item() < 0:
Q = torch.FloatTensor([0.0])
img_num += 1.0
avg_q += Q.item()
avg_q /= img_num
return avg_q
def IOU(loader,cuda=True):
iou, img_num = 0.0, 0.0
trans = transforms.Compose([transforms.ToTensor()])
with torch.no_grad():
for mask1, mask2 in loader:
if cuda:
mask1 = trans(mask1).cuda()
mask2 = trans(mask2).cuda()
else:
mask1 = trans(mask1)
mask2 = trans(mask2)
mask1, mask2 = (mask1>0.5).to(torch.bool), (mask2>0.5).to(torch.bool)
intersection = torch.sum(mask1 * (mask1 == mask2), dim=[-1, -2]).squeeze()
union = torch.sum(mask1 + mask2, dim=[-1, -2]).squeeze()
iou += (intersection.to(torch.float) / union).mean().item()
img_num += 1.0
iou /= img_num
return iou
def accuracy(loader,cuda=True):
acc, img_num = 0.0, 0.0
trans = transforms.Compose([transforms.ToTensor()])
with torch.no_grad():
for mask1, mask2 in loader:
if cuda:
mask1 = trans(mask1).cuda()
mask2 = trans(mask2).cuda()
else:
mask1 = trans(mask1)
mask2 = trans(mask2)
mask1, mask2 = (mask1>0.5).to(torch.bool), (mask2>0.5).to(torch.bool)
acc += torch.mean((mask1 == mask2).to(torch.float)).item()
img_num += 1.0
acc /= img_num
return acc
def eval_e(y_pred, y, num,cuda=True):
if cuda:
score = torch.zeros(num).cuda()
thlist = torch.linspace(0, 1 - 1e-10, num).cuda()
else:
score = torch.zeros(num)
thlist = torch.linspace(0, 1 - 1e-10, num)
for i in range(num):
y_pred_th = (y_pred >= thlist[i]).float()
fm = y_pred_th - y_pred_th.mean()
gt = y - y.mean()
align_matrix = 2 * gt * fm / (gt * gt + fm * fm + 1e-20)
enhanced = ((align_matrix + 1) * (align_matrix + 1)) / 4
score[i] = torch.sum(enhanced) / (y.numel() - 1 + 1e-20)
return score
def eval_pr(y_pred, y, num,cuda=True):
if cuda:
prec, recall = torch.zeros(num).cuda(), torch.zeros(num).cuda()
thlist = torch.linspace(0, 1 - 1e-10, num).cuda()
else:
prec, recall = torch.zeros(num), torch.zeros(num)
thlist = torch.linspace(0, 1 - 1e-10, num)
for i in range(num):
y_temp = (y_pred >= thlist[i]).float()
tp = (y_temp * y).sum()
prec[i], recall[i] = tp / (y_temp.sum() + 1e-20), tp / (y.sum() + 1e-20)
return prec, recall
def S_object(pred, gt):
fg = torch.where(gt == 0, torch.zeros_like(pred), pred)
bg = torch.where(gt == 1, torch.zeros_like(pred), 1 - pred)
o_fg = object(fg, gt)
o_bg = object(bg, 1 - gt)
u = gt.mean()
Q = u * o_fg + (1 - u) * o_bg
return Q
def object( pred, gt):
temp = pred[gt == 1]
x = temp.mean()
sigma_x = temp.std()
score = 2.0 * x / (x * x + 1.0 + sigma_x + 1e-20)
return score
def S_region( pred, gt):
X, Y = centroid(gt)
gt1, gt2, gt3, gt4, w1, w2, w3, w4 = divideGT(gt, X, Y)
p1, p2, p3, p4 =dividePrediction(pred, X, Y)
Q1 = ssim(p1, gt1)
Q2 = ssim(p2, gt2)
Q3 = ssim(p3, gt3)
Q4 = ssim(p4, gt4)
Q = w1 * Q1 + w2 * Q2 + w3 * Q3 + w4 * Q4
# print(Q)
return Q
def centroid( gt ,cuda=True):
rows, cols = gt.size()[-2:]
gt = gt.view(rows, cols)
if gt.sum() == 0:
if cuda:
X = torch.eye(1).cuda() * round(cols / 2)
Y = torch.eye(1).cuda() * round(rows / 2)
else:
X = torch.eye(1) * round(cols / 2)
Y = torch.eye(1) * round(rows / 2)
else:
total = gt.sum()
if cuda:
i = torch.from_numpy(np.arange(0, cols)).cuda().float()
j = torch.from_numpy(np.arange(0, rows)).cuda().float()
else:
i = torch.from_numpy(np.arange(0, cols)).float()
j = torch.from_numpy(np.arange(0, rows)).float()
X = torch.round((gt.sum(dim=0) * i).sum() / total)
Y = torch.round((gt.sum(dim=1) * j).sum() / total)
return X.long(), Y.long()
def divideGT(gt, X, Y):
h, w = gt.size()[-2:]
area = h * w
gt = gt.view(h, w)
LT = gt[:Y, :X]
RT = gt[:Y, X:w]
LB = gt[Y:h, :X]
RB = gt[Y:h, X:w]
X = X.float()
Y = Y.float()
w1 = X * Y / area
w2 = (w - X) * Y / area
w3 = X * (h - Y) / area
w4 = 1 - w1 - w2 - w3
return LT, RT, LB, RB, w1, w2, w3, w4
def dividePrediction( pred, X, Y):
h, w = pred.size()[-2:]
pred = pred.view(h, w)
LT = pred[:Y, :X]
RT = pred[:Y, X:w]
LB = pred[Y:h, :X]
RB = pred[Y:h, X:w]
return LT, RT, LB, RB
def ssim( pred, gt):
gt = gt.float()
h, w = pred.size()[-2:]
N = h * w
x = pred.mean()
y = gt.mean()
sigma_x2 = ((pred - x) * (pred - x)).sum() / (N - 1 + 1e-20)
sigma_y2 = ((gt - y) * (gt - y)).sum() / (N - 1 + 1e-20)
sigma_xy = ((pred - x) * (gt - y)).sum() / (N - 1 + 1e-20)
aplha = 4 * x * y * sigma_xy
beta = (x * x + y * y) * (sigma_x2 + sigma_y2)
if aplha != 0:
Q = aplha / (beta + 1e-20)
elif aplha == 0 and beta == 0:
Q = 1.0
else:
Q = 0
return Q
pred_dir0 = 'save_masks/ECSSD/'
log_path = os.path.join(pred_dir0, "logs")
if not os.path.exists(log_path):
os.makedirs(log_path)
logging.basicConfig(filename=os.path.join(log_path, "metrics_ecssd.log"), filemode='w', level=logging.INFO)
test_datasets = ['ECSSD', 'DUTS', 'DUT-OMRON']
gt_dir = './Test/'
pred_dir=pred_dir0
for dataset in test_datasets:
loader = EvalDataset(osp.join(pred_dir), osp.join(gt_dir, dataset, 'GT'))
print('Length of the dataset: {}'.format(len(loader)))
f = Eval_fmeasure(loader=loader, cuda=True)
iou = IOU(loader=loader, cuda=True)
ACC = accuracy(loader=loader, cuda=True)
logging.info('dataset:{} F:{:.4f} & iou:{:.4f} & ACC:{:.4f}'.format(dataset, f, iou, ACC))
print('dataset:{} F:{:.4f} & iou:{:.4f} & ACC:{:.4f}'.format(dataset, f, iou, ACC))