forked from ralbertazzi/jigsaw-puzzle-solver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
side_extractor.py
735 lines (511 loc) · 24.7 KB
/
side_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
import numpy as np
import scipy
import scipy.ndimage as ndimage
import scipy.ndimage.filters as filters
import matplotlib as mpl
import matplotlib.pyplot as plt
from functools import partial
import cv2
import skimage
from sklearn.cluster import KMeans
from utils import get_line_through_points, distance_point_line_squared, distance_point_line_signed, rotate
_corner_indexes = [(0, 1), (1, 3), (3, 2), (0, 2)]
def compute_barycentre(thresh, value=0):
"""
Given the segmented puzzle piece, compute its barycentre.
"""
idx_shape = np.where(thresh == value)
return [int(np.round(coords.mean())) for coords in idx_shape]
def compute_minmax_xy(thresh):
"""
Given the thresholded image, compute the minimum and maximum x and y
coordinates of the segmented puzzle piece.
"""
idx_shape = np.where(thresh == 0)
return [np.array([coords.min(), coords.max()]) for coords in idx_shape]
def segment_piece(image, bin_threshold=128):
"""
Apply segmentation of the image by simple binarization
"""
return cv2.threshold(image, bin_threshold, 255, cv2.THRESH_BINARY)[1]
def extract_piece(thresh):
# Here we build a square image centered on the blob (piece of the puzzle).
# The image is constructed large enough to allow for piece rotations.
minmax_y, minmax_x = compute_minmax_xy(thresh)
ly, lx = minmax_y[1] - minmax_y[0], minmax_x[1] - minmax_x[0]
size = int(max(ly, lx) * np.sqrt(2))
x_extract = thresh[minmax_y[0]:minmax_y[1] + 1, minmax_x[0]:minmax_x[1] + 1]
ly, lx = x_extract.shape
xeh, xew = x_extract.shape
x_copy = np.full((size, size), 255, dtype='uint8')
sy, sx = size // 2 - ly // 2, size // 2 - lx // 2
x_copy[sy: sy + ly, sx: sx + lx] = x_extract
thresh = x_copy
thresh = 255 - thresh
return thresh
def prune_lines_by_voting(lines, angle_threshold=5):
accumulator = np.zeros(45)
angles = lines[:, 1] * 180 / np.pi
angles[angles >= 135] = 180 - angles[angles >= 135]
angles[angles >= 90] -= 90
angles[angles >= 45] = 90 - angles[angles >= 45]
for angle, weight in zip(angles, np.linspace(1, 0.5, len(lines))):
angle = int(np.round(angle))
def add(a, w):
if a >= 0 and a < len(accumulator):
accumulator[a] += w
add(angle - 3, weight * 0.1)
add(angle - 2, weight * 0.5)
add(angle - 1, weight * 0.8)
add(angle, weight)
add(angle + 1, weight * 0.8)
add(angle + 2, weight * 0.5)
add(angle + 3, weight * 0.1)
# print accumulator
best_angle = np.argmax(accumulator)
print 'best angle', best_angle
return lines[np.abs(angles - best_angle) <= angle_threshold]
def compute_mean_line(lines, debug=False):
if len(lines) == 1:
return lines[0]
neg_idx = np.where(lines[:, 0] < 0)
lines = lines.copy()
lines[neg_idx, 0] = np.abs(lines[neg_idx, 0])
lines[neg_idx, 1] = lines[neg_idx, 1] - np.pi
weights = np.linspace(1.0, 0.5, len(lines))
rhos = np.abs(lines[:, 0])
mean_rho, std_rho = np.mean(rhos), np.std(rhos)
gaussian_weigthts = np.array([scipy.stats.norm(mean_rho, std_rho).pdf(r) for r in rhos])
weights *= gaussian_weigthts
sum_weights = np.sum(weights)
# Compute weighted sum
m_rho = np.sum(rhos * weights) / sum_weights
sines, cosines = np.sin(lines[:, 1]), np.cos(lines[:, 1])
m_sine = np.sum(sines * weights) / sum_weights
m_cosine = np.sum(cosines * weights) / sum_weights
m_theta = np.arctan2(m_sine, m_cosine)
if debug:
print(correction_factor)
print(weights)
print
return np.array([m_rho, m_theta])
def line_intersection(line1, line2):
# Solve the linear system that computes the intersection between
# two lines, each one defined as a tuple (rho, theta) (the result comes from Hough lines)
# If the lines have the same theta (parallel lines), a None result is returned
rho1, theta1 = line1
rho2, theta2 = line2
if theta1 == theta2:
return None, None
A = np.array([
[np.cos(theta1), np.sin(theta1)],
[np.cos(theta2), np.sin(theta2)]
])
b = np.array([[rho1], [rho2]])
x0, y0 = np.linalg.solve(A, b)
x0, y0 = int(np.round(x0)), int(np.round(y0))
return x0, y0
def compute_intersections(mean_lines, (h, w)):
intersections = []
for i, line_i in enumerate(mean_lines):
for j, line_j in enumerate(mean_lines[i+1:], start=i+1):
x0, y0 = line_intersection(line_i, line_j)
if x0 >= 0 and y0 >= 0 and x0 < w and y0 < h:
intersections.append([x0, y0])
return np.array(intersections)
def corner_detection(edges, intersections, (xb, yb), rect_size=50, show=False):
# Find corners by taking the highest distant point from a 45 degrees inclined line
# inside a squared ROI centerd on the previously found intersection point.
# Inclination of the line depends on which corner we are looking for, and is
# computed based on the position of the barycenter of the piece.
corners = []
for idx, intersection in enumerate(intersections):
xi, yi = intersection
m = -1 if (yb - yi)*(xb - xi) > 0 else 1
y0 = 0 if yb < yi else 2*rect_size
x0 = 0 if xb < xi else 2*rect_size
a, b, c = m, -1, -m*x0 + y0
rect = edges[yi - rect_size: yi + rect_size, xi - rect_size: xi + rect_size].copy()
edge_idx = np.nonzero(rect)
if len(edge_idx[0]) > 0:
distances = [(a*edge_x + b*edge_y + c)**2 for edge_y, edge_x in zip(*edge_idx)]
corner_idx = np.argmax(distances)
rect_corner = np.array((edge_idx[1][corner_idx], edge_idx[0][corner_idx]))
offset_corner = rect_corner - rect_size
real_corner = intersection + offset_corner
corners.append(real_corner)
else:
# If the window is completely black I can make no assumption: I keep the same corner
corners.append(intersection)
if show:
plt.subplot(220 + idx + 1)
cv2.circle(rect, tuple(rect_corner), 5, 128)
plt.title("{0} | {1}".format(intersection, (x0, y0)))
plt.imshow(rect)
if show:
plt.show()
return corners
def order_corners(corners):
corners.sort(key=lambda k: k[0] + k[1])
antidiag_corners = sorted(corners[1:3], key=lambda k: k[1])
corners[1:3] = antidiag_corners
return corners
def compute_line_params(corners):
return [get_line_through_points(corners[i1], corners[i2]) for i1, i2 in _corner_indexes]
def shape_classification(edges, line_params, d_threshold=500, n_hs=10):
# First part: we take all edge points and classify them only if their distance to one of the 4 piece
# lines is smaller than a certain threshold. If that happens, we can be certain that the point belongs
# to that side of the piece. If each one of the four distances is higher than the threshold, the point
# will be classified during the second phase.
y_nonzero, x_nonzero = np.nonzero(edges)
distances = []
class_image = np.zeros(edges.shape, dtype='uint8')
non_classified_points = []
for x_edge, y_edge in zip(x_nonzero, y_nonzero):
d = [distance_point_line_squared(line_param, (x_edge, y_edge)) for line_param in line_params]
if np.min(d) < d_threshold:
class_image[y_edge, x_edge] = np.argmin(d) + 1
else:
non_classified_points.append((x_edge, y_edge))
non_classified_points = np.array(non_classified_points)
# Second part: hysteresis classification
# Edge points that have not been classified because they are too far from all lines
# will be classified based on their neighborood: if the neighborhood of a point contains
# an already classified point, it will be classified with the same class.
# It's very unlikely that the neighborhood of a non classified point will contain two different
# classes, so we just take the first non-zero value that we find inside the neighborhood
# The process is repeated and at each iteration the newly classified points are removed from the ones
# that still need to be classified. The process is interrupted when no new point has been classified
# or when a maximum number of iterations has been reached (in case of a noisy points that has no neighbours).
map_iteration = 0
max_map_iterations = 50
while map_iteration < max_map_iterations:
map_iteration += 1
classified_points_at_current_iteration = []
for idx, (x_edge, y_edge) in enumerate(non_classified_points):
neighborhood = class_image[y_edge - n_hs: y_edge + n_hs + 1, x_edge - n_hs: x_edge + n_hs + 1]
n_mapped = np.nonzero(neighborhood)
if len(n_mapped[0]) > 0:
ny, nx = n_mapped[0][0] - n_hs, n_mapped[1][0] - n_hs
class_image[y_edge, x_edge] = class_image[y_edge + ny, x_edge + nx]
classified_points_at_current_iteration.append(idx)
if len(non_classified_points) > 0:
non_classified_points = np.delete(non_classified_points, classified_points_at_current_iteration, axis=0)
else:
break
return class_image
def compute_inout(class_image, line_params, (xb, yb), d_threshold=10):
# Given the full class image, the line parameters and the coordinates of the barycenter,
# compute for each side if the curve of the piece goes inside (in) or outside (out).
# This is done by computing the mean coordinates for each class and see if the signed distance
# from the corners' line has the same sign of the signed distance of the barycenter. If that
# true, the two points lie on the same side and we have a in; otherwise we have a out.
# To let the points of the curve to contribute more to the mean point calculation, only the
# signed distances that are greater than a threshold are used.
inout = []
for line_param, cl in zip(line_params, (1, 2, 3, 4)):
coords = np.array([zip(*np.where(class_image == cl))])[0]
distances = np.array([distance_point_line_signed(line_param, (x0, y0)) for y0, x0 in coords])
distances = distances[np.abs(distances) > d_threshold]
m_dist = np.mean(distances)
b_dist = distance_point_line_signed(line_param, (xb, yb))
if b_dist * m_dist > 0:
inout.append('in')
else:
inout.append('out')
return inout
def create_side_images(class_image, inout, corners):
how_to_rotate = [(90, -90), (180, 0), (-90, 90), (0, 180)]
side_images = []
for cl in (1, 2, 3, 4):
side_image = np.zeros(class_image.shape, dtype='uint8')
side_image[class_image == cl] = cl
io = inout[cl - 1]
htw = how_to_rotate[cl - 1]
side_corners_idx = _corner_indexes[cl - 1]
htw = htw[0] if io == 'in' else htw[1]
side_image_rot, M = rotate(side_image, htw)
side_corners = np.array(np.round([M.dot((corners[corner_idx][0], corners[corner_idx][1], 1))
for corner_idx in side_corners_idx])).astype(np.int)
# Order the corners from higher (smaller y coordinate)
if side_corners[0, 1] > side_corners[1, 1]:
side_corners = side_corners[::-1]
# Correct the angle on each side separately
if side_corners[0, 0] != side_corners[1, 0]:
m = float(side_corners[1, 1] - side_corners[0, 1]) / (side_corners[1, 0] - side_corners[0, 0])
corners_angle = np.arctan(m) * 180 / np.pi
correction_angle = - (corners_angle / abs(corners_angle) * 90 - corners_angle)
side_image_rot, M = rotate(side_image_rot, correction_angle)
side_image_rot[side_image_rot <= 0.5] = 0
side_image_rot[side_image_rot > 0.5] = 1
nz = np.nonzero(side_image_rot)
min_y, max_y, min_x, max_x = np.min(nz[0]), np.max(nz[0]), np.min(nz[1]), np.max(nz[1])
side_image_rot = side_image_rot[min_y:max_y+1, min_x:max_x+1]
side_images.append(side_image_rot)
return side_images
def plot_side_images(side_images, inout):
for cl, (side_image, io) in enumerate(zip(side_images, inout), start=1):
plt.subplot(220 + cl)
plt.title("{0} {1}".format(cl, io))
plt.imshow(cv2.dilate(side_image, (3,3)))
def draw_lines(image, lines, color):
for rho, theta in lines:
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
y0 = b*rho
x1 = int(x0 + 1000*(-b))
y1 = int(y0 + 1000*(a))
x2 = int(x0 - 1000*(-b))
y2 = int(y0 - 1000*(a))
cv2.line(image, (x1,y1), (x2,y2), color, 2)
return image
def cluster_lines(lines):
# split based on angle
sines = np.sin(lines[:, 1])
ordinates = np.abs(lines[:, 0])
kmeans_angle = KMeans(n_clusters=2).fit(sines.reshape(-1, 1))
ord0 = ordinates[kmeans_angle.labels_ == 0]
ord1 = ordinates[kmeans_angle.labels_ == 1]
print(sines[kmeans_angle.labels_ == 0])
print(sines[kmeans_angle.labels_ == 1])
# split based on ordinate
kmeans_lines0 = KMeans(n_clusters=2).fit(ord0.reshape(-1, 1))
kmeans_lines1 = KMeans(n_clusters=2).fit(ord1.reshape(-1, 1))
count_lines0 = 0
count_lines1 = 0
final_labels = []
for idx in range(len(lines)):
angle_label = kmeans_angle.labels_[idx]
if angle_label == 0:
coord_label = kmeans_lines0.labels_[count_lines0]
count_lines0 += 1
if coord_label == 0:
final_labels.append(0)
else:
final_labels.append(1)
else:
coord_label = kmeans_lines1.labels_[count_lines1]
count_lines1 += 1
if coord_label == 0:
final_labels.append(2)
else:
final_labels.append(3)
return np.array(final_labels)
def get_corners(dst, neighborhood_size=5, score_threshold=0.3, minmax_threshold=100):
"""
Given the input Harris image (where in each pixel the Harris function is computed),
extract discrete corners
"""
data = dst.copy()
data[data < score_threshold*dst.max()] = 0.
data_max = filters.maximum_filter(data, neighborhood_size)
maxima = (data == data_max)
data_min = filters.minimum_filter(data, neighborhood_size)
diff = ((data_max - data_min) > minmax_threshold)
maxima[diff == 0] = 0
labeled, num_objects = ndimage.label(maxima)
slices = ndimage.find_objects(labeled)
yx = np.array(ndimage.center_of_mass(data, labeled, range(1, num_objects+1)))
return yx[:, ::-1]
def get_best_fitting_rect_coords(xy, d_threshold=30, perp_angle_thresh=20, verbose=0):
"""
Since we expect the 4 puzzle corners to be the corners of a rectangle, here we take
all detected Harris corners and we find the best corresponding rectangle.
We perform a recursive search with max depth = 2:
- At depth 0 we take one of the input point as the first corner of the rectangle
- At depth 1 we select another input point (with distance from the first point greater
then d_threshold) as the second point
- At depth 2 and 3 we take the other points. However, the lines 01-12 and 12-23 should be
as perpendicular as possible. If the angle formed by these lines is too much far from the
right angle, we discard the choice.
- At depth 3, if a valid candidate (4 points that form an almost perpendicular rectangle) is found,
we add it to the list of candidates.
Given a list of candidate rectangles, we then select the best one by taking the candidate that maximizes
the function: area * Gaussian(rectangularness)
- area: it is the area of the candidate shape. We expect that the puzzle corners will form the maximum area
- rectangularness: it is the mse of the candidate shape's angles compared to a 90 degree angles. The smaller
this value, the most the shape is similar toa rectangle.
"""
N = len(xy)
distances = scipy.spatial.distance.cdist(xy, xy)
distances[distances < d_threshold] = 0
def compute_angles(xy):
angles = np.zeros((N, N))
for i in range(N):
for j in range(i + 1, N):
point_i, point_j = xy[i], xy[j]
if point_i[0] == point_j[0]:
angle = 90
else:
angle = np.arctan2(point_j[1] - point_i[1], point_j[0] - point_i[0]) * 180 / np.pi
angles[i, j] = angle
angles[j, i] = angle
return angles
angles = compute_angles(xy)
possible_rectangles = []
def search_for_possible_rectangle(idx, prev_points=[]):
curr_point = xy[idx]
depth = len(prev_points)
if depth == 0:
right_points_idx = np.nonzero(np.logical_and(xy[:, 0] > curr_point[0], distances[idx] > 0))[0]
if verbose >= 2:
print 'point', idx, curr_point
for right_point_idx in right_points_idx:
search_for_possible_rectangle(right_point_idx, [idx])
if verbose >= 2:
print
return
last_angle = angles[idx, prev_points[-1]]
perp_angle = last_angle - 90
if perp_angle < 0:
perp_angle += 180
if depth in (1, 2):
if verbose >= 2:
print '\t' * depth, 'point', idx, '- last angle', last_angle, '- perp angle', perp_angle
diff0 = np.abs(angles[idx] - perp_angle) <= perp_angle_thresh
diff180_0 = np.abs(angles[idx] - (perp_angle + 180)) <= perp_angle_thresh
diff180_1 = np.abs(angles[idx] - (perp_angle - 180)) <= perp_angle_thresh
all_diffs = np.logical_or(diff0, np.logical_or(diff180_0, diff180_1))
diff_to_explore = np.nonzero(np.logical_and(all_diffs, distances[idx] > 0))[0]
if verbose >= 2:
print '\t' * depth, 'diff0:', np.nonzero(diff0)[0], 'diff180:', np.nonzero(diff180)[0], 'diff_to_explore:', diff_to_explore
for dte_idx in diff_to_explore:
if dte_idx not in prev_points: # unlickly to happen but just to be certain
next_points = prev_points[::]
next_points.append(idx)
search_for_possible_rectangle(dte_idx, next_points)
if depth == 3:
angle41 = angles[idx, prev_points[0]]
diff0 = np.abs(angle41 - perp_angle) <= perp_angle_thresh
diff180_0 = np.abs(angle41 - (perp_angle + 180)) <= perp_angle_thresh
diff180_1 = np.abs(angle41 - (perp_angle - 180)) <= perp_angle_thresh
dist = distances[idx, prev_points[0]] > 0
if dist and (diff0 or diff180_0 or diff180_1):
rect_points = prev_points[::]
rect_points.append(idx)
if verbose == 2:
print 'We have a rectangle:', rect_points
already_present = False
for possible_rectangle in possible_rectangles:
if set(possible_rectangle) == set(rect_points):
already_present = True
break
if not already_present:
possible_rectangles.append(rect_points)
if verbose >= 2:
print 'Coords'
print xy
print
print 'Distances'
print distances
print
print 'Angles'
print angles
print
for i in range(N):
search_for_possible_rectangle(i)
if len(possible_rectangles) == 0:
return None
def PolyArea(x,y):
return 0.5*np.abs(np.dot(x,np.roll(y,1))-np.dot(y,np.roll(x,1)))
areas = []
rectangularness = []
diff_angles = []
for r in possible_rectangles:
points = xy[r]
areas.append(PolyArea(points[:, 0], points[:, 1]))
mse = 0
da = []
for i1, i2, i3 in [(0, 1, 2), (1, 2, 3), (2, 3, 0), (3, 0, 1)]:
diff_angle = abs(angles[r[i1], r[i2]] - angles[r[i2], r[i3]])
da.append(abs(diff_angle - 90))
mse += (diff_angle - 90) ** 2
diff_angles.append(da)
rectangularness.append(mse)
areas = np.array(areas)
rectangularness = np.array(rectangularness)
scores = areas * scipy.stats.norm(0, 150).pdf(rectangularness)
best_fitting_idxs = possible_rectangles[np.argmax(scores)]
return xy[best_fitting_idxs]
####################################################################################################################
def get_default_params():
side_extractor_default_values = {
'before_segmentation_func': partial(cv2.medianBlur, ksize=5),
'bin_threshold': 130,
'after_segmentation_func': None,
'scale_factor': 0.5,
'harris_blocksize': 5,
'harris_ksize': 5,
'corner_nsize': 5,
'corner_score_threshold': 0.2,
'corner_minmax_threshold': 100,
'corner_refine_rect_size': 5,
'edge_erode_size': 3,
'shape_classification_distance_threshold': 100,
'shape_classification_nhs': 5,
'inout_distance_threshold': 5
}
return side_extractor_default_values.copy()
def process_piece(image, **kwargs):
params = get_default_params()
for key in kwargs:
params[key] = kwargs[key]
out_dict = {}
try:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
before_segmentation_func = params['before_segmentation_func']
after_segmentation_func = params['after_segmentation_func']
bin_threshold = params['bin_threshold']
if before_segmentation_func is not None:
gray = before_segmentation_func(gray)
gray = segment_piece(gray, bin_threshold)
out_dict['segmented'] = gray.copy()
if after_segmentation_func is not None:
gray = after_segmentation_func(gray)
gray = extract_piece(gray)
ret, labels = cv2.connectedComponents(gray)
connected_areas = [np.count_nonzero(labels == l) for l in range(1, ret)]
max_area_idx = np.argmax(connected_areas) + 1
gray[labels != max_area_idx] = 0
gray = 255 - gray
gray = extract_piece(gray)
out_dict['extracted'] = gray.copy()
scaled_size = int(gray.shape[0] * params['scale_factor']), int(gray.shape[1] * params['scale_factor'])
gray_harris = cv2.resize(gray, scaled_size)
harris = cv2.cornerHarris(gray_harris, params['harris_blocksize'], params['harris_ksize'], 0.04)
harris = harris * gray_harris
out_dict['harris'] = harris
xy = get_corners(harris, params['corner_nsize'], params['corner_score_threshold'], params['corner_minmax_threshold'])
xy = np.round(xy / params['scale_factor']).astype(np.int)
out_dict['xy'] = xy
if len(xy) < 4:
raise RuntimeError('Not enough corners')
intersections = get_best_fitting_rect_coords(xy, perp_angle_thresh=30)
if intersections is None:
raise RuntimeError('No rectangle found')
if intersections[1, 0] == intersections[0, 0]:
rotation_angle = 90
else:
rotation_angle = np.arctan2(intersections[1, 1] - intersections[0, 1], intersections[1, 0] - intersections[0, 0]) * 180 / np.pi
edges = gray - cv2.erode(gray, np.ones((params['edge_erode_size'], params['edge_erode_size'])))
# Rotate all images
edges, M = rotate(edges, rotation_angle)
out_dict['edges'] = edges
# Rotate intersection points
intersections = np.array(np.round([M.dot((point[0], point[1], 1)) for point in intersections])).astype(np.int)
yb, xb = compute_barycentre(gray)
corners = corner_detection(edges, intersections, (xb, yb), params['corner_refine_rect_size'], show=False)
corners = order_corners(corners)
line_params = compute_line_params(corners)
class_image = shape_classification(edges, line_params, params['shape_classification_distance_threshold'],
params['shape_classification_nhs'])
out_dict['class_image'] = class_image
inout = compute_inout(class_image, line_params, (xb, yb), params['inout_distance_threshold'])
out_dict['inout'] = inout
side_images = create_side_images(class_image, inout, corners)
out_dict['side_images'] = side_images
except Exception as e:
out_dict['error'] = e
finally:
return out_dict