-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
101 lines (91 loc) · 3.23 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import os
import numpy as np
from math import sqrt
from scipy import stats
from torch_geometric.data import InMemoryDataset, DataLoader
from torch_geometric import data as DATA
import torch
class TestbedDataset(InMemoryDataset):
def __init__(self, root='/tmp', dataset='davis',
xd=None, xt=None, y=None, transform=None,
pre_transform=None,smile_graph=None):
super(TestbedDataset, self).__init__(root, transform, pre_transform)
# benchmark dataset, default = 'davis'
self.dataset = dataset
if os.path.isfile(self.processed_paths[0]):
print('Pre-processed data found: {}, loading ...'.format(self.processed_paths[0]))
self.data, self.slices = torch.load(self.processed_paths[0])
else:
print('Pre-processed data {} not found, doing pre-processing...'.format(self.processed_paths[0]))
self.process(xd, xt, y,smile_graph)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
pass
@property
def processed_file_names(self):
return [self.dataset + '.pt']
def download(self):
pass
def _download(self):
pass
def _process(self):
if not os.path.exists(self.processed_dir):
os.makedirs(self.processed_dir)
def process(self, xd, xt, y,smile_graph):
assert (len(xd) == len(xt) and len(xt) == len(y)), "The three lists must be the same length!"
data_list = []
data_len = len(xd)
for i in range(data_len):
print('Converting SMILES to graph: {}/{}'.format(i+1, data_len))
smiles = xd[i]
target = xt[i]
labels = y[i]
c_size, features, edge_index = smile_graph[smiles]
GCNData = DATA.Data(x=torch.Tensor(features),
edge_index=torch.LongTensor(edge_index).transpose(1, 0),
y=torch.FloatTensor([labels]))
GCNData.target = torch.LongTensor([target])
GCNData.__setitem__('c_size', torch.LongTensor([c_size]))
data_list.append(GCNData)
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
data_list = [self.pre_transform(data) for data in data_list]
print('Graph construction done. Saving to file.')
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])
def rmse(y,f):
rmse = sqrt(((y - f)**2).mean(axis=0))
return rmse
def mse(y,f):
mse = ((y - f)**2).mean(axis=0)
return mse
def pearson(y,f):
rp = np.corrcoef(y, f)[0,1]
return rp
def spearman(y,f):
rs = stats.spearmanr(y, f)[0]
return rs
def ci(y,f):
ind = np.argsort(y)
y = y[ind]
f = f[ind]
i = len(y)-1
j = i-1
z = 0.0
S = 0.0
while i > 0:
while j >= 0:
if y[i] > y[j]:
z = z+1
u = f[i] - f[j]
if u > 0:
S = S + 1
elif u == 0:
S = S + 0.5
j = j - 1
i = i - 1
j = i-1
ci = S/z
return ci