You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi, I am working on deeponet_pde.py code to learn the operator from u -> I for ODE dI/dt = u * gamma * (1 - I) * I - gamma * I.
In deeponet_pde.py, I basically only modified the ode_system(T) but the result is really bad even I increase the number of training and test set. At this point, I think maybe the ode I am working with is not proper ode for the code. I am not sure what to modify.
Here is my code below. Any suggestion will be appreciated!
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import itertools
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import deepxde as dde
from spaces import FinitePowerSeries, FiniteChebyshev, GRF
from system import LTSystem, ODESystem, DRSystem, CVCSystem, ADVDSystem
from utils import merge_values, trim_to_65535, mean_squared_error_outlier, safe_test
import scipy
from scipy.integrate import solve_ivp
# Define the length of period
T = 29
def test_u_ode(nn, system, T, m, model, data, u, fname, num=100):
"""Test ODE"""
sensors = np.linspace(0, T, num=m)[:, None]
sensor_values = u(sensors)
x = np.linspace(0, T, num=num)[:, None]
X_test = [np.tile(sensor_values.T, (num, 1)), x]
y_test = system.eval_s_func(u, x)
if nn != "opnn":
X_test = merge_values(X_test)
y_pred = model.predict(data.transform_inputs(X_test))
np.savetxt(fname, np.hstack((x, y_test, y_pred)))
print("L2relative error:", dde.metrics.l2_relative_error(y_test, y_pred))
return X_test[1], y_pred
def ode_system(T):
def g(s, u, x):
gamma = 0.1
return u * gamma * (1-s) * s - gamma * s
s0 = [0.1]
return ODESystem(g, s0, T)
def solve_ode(u, t_range):
"""
Solve the ordinary differential equation (ODE) dI/dt = u * gamma * (1 - I) * I - gamma * I
over the range of `t` values specified by `t_range`. The solution is used
to compare with the prediction of DeepONet.
"""
# Define the initial condition of I
gamma = 0.1
I_0 = 0.1
def ode_func(t, I):
return u * gamma * (1 - I) * I - gamma * I
sol = solve_ivp(ode_func, t_range, [I_0], dense_output=True)
t = sol.t
I = sol.y[0]
return t, I
t_range = [0, T] # Start and end time
def run(problem, system, space, T, m, nn, net, lr, epochs, num_train, num_test):
# space_test = GRF(1, length_scale=0.1, N=1000, interp="cubic")
X_train, y_train = system.gen_operator_data(space, m, num_train)
X_test, y_test = system.gen_operator_data(space, m, num_test)
if nn != "opnn":
X_train = merge_values(X_train)
X_test = merge_values(X_test)
X_test_trim = trim_to_65535(X_test)[0]
y_test_trim = trim_to_65535(y_test)[0]
if nn == "opnn":
data = dde.data.OpDataSet(
X_train=X_train, y_train=y_train, X_test=X_test_trim, y_test=y_test_trim
)
else:
data = dde.data.DataSet(
X_train=X_train, y_train=y_train, X_test=X_test_trim, y_test=y_test_trim
)
model = dde.Model(data, net)
model.compile("adam", lr=lr, metrics=[mean_squared_error_outlier])
checker = dde.callbacks.ModelCheckpoint(
"model/model.ckpt", save_better_only=True, period=10
)
losshistory, train_state = model.train(epochs=epochs, callbacks=[checker])
print("# Parameters:", np.sum([np.prod(v.get_shape().as_list()) for v in tf.compat.v1.trainable_variables()]))
dde.saveplot(losshistory, train_state, issave=True, isplot=True)
model.restore("model/model.ckpt-" + str(train_state.best_step), verbose=1)
safe_test(model, data, X_test, y_test)
# Function to test the trained model
u1 = 2.0
u2 = 1.0
t1,I1 = solve_ode(u1, t_range)
t2,I2 = solve_ode(u2, t_range)
tests = [
(lambda x: u1*np.ones_like(x), "x1.dat", t1, I1),
(lambda x: u2*np.ones_like(x), "x2.dat", t2, I2),
]
for u, fname, x, sol_s in tests:
if problem == "ode":
# Predicted solution of trained model
x_pred, y_pred = test_u_ode(nn, system, T, m, model, data, u, fname)
plt.figure()
plt.title('%s' %fname)
plt.plot(x_pred,y_pred,label = 'Predicted')
plt.plot(x,sol_s, label = 'True')
plt.xlabel('x')
plt.ylabel('s(x)')
plt.legend()
def main():
problem = "ode"
if problem == "ode":
system = ode_system(T)
# Function space
space = GRF(T, length_scale=0.1, N=3000, interp="cubic")
# Hyperparameters
# Number of sensors
m = 15
# Number of training set
num_train = 500
# Number of test set
num_test = 500
# Learning rate
lr = 0.01
# Number of epochs
epochs = 100
# Network
nn = "opnn"
activation = "relu"
initializer = "Glorot normal" # "He normal" or "Glorot normal"
dim_x = 1
if nn == "opnn":
net = dde.maps.OpNN(
[m, 40, 40],
[dim_x, 40, 40],
activation,
initializer,
use_bias=True,
stacked=False,
)
elif nn == "fnn":
net = dde.maps.FNN([m + dim_x] + [100] * 2 + [1], activation, initializer)
elif nn == "resnet":
net = dde.maps.ResNet(m + dim_x, 1, 128, 2, activation, initializer)
run(problem, system, space, T, m, nn, net, lr, epochs, num_train, num_test)
if __name__ == "__main__":
main()
And this is the prediction.
The text was updated successfully, but these errors were encountered:
Hi, I am working on deeponet_pde.py code to learn the operator from u -> I for ODE dI/dt = u * gamma * (1 - I) * I - gamma * I.
In deeponet_pde.py, I basically only modified the
ode_system(T)
but the result is really bad even I increase the number of training and test set. At this point, I think maybe the ode I am working with is not proper ode for the code. I am not sure what to modify.Here is my code below. Any suggestion will be appreciated!
And this is the prediction.
The text was updated successfully, but these errors were encountered: