forked from MIC-DKFZ/nnUNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataset137_BraTS21.py
98 lines (78 loc) · 3.9 KB
/
Dataset137_BraTS21.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import multiprocessing
import shutil
from multiprocessing import Pool
import SimpleITK as sitk
import numpy as np
from batchgenerators.utilities.file_and_folder_operations import *
from nnunetv2.dataset_conversion.generate_dataset_json import generate_dataset_json
from nnunetv2.paths import nnUNet_raw
def copy_BraTS_segmentation_and_convert_labels_to_nnUNet(in_file: str, out_file: str) -> None:
# use this for segmentation only!!!
# nnUNet wants the labels to be continuous. BraTS is 0, 1, 2, 4 -> we make that into 0, 1, 2, 3
img = sitk.ReadImage(in_file)
img_npy = sitk.GetArrayFromImage(img)
uniques = np.unique(img_npy)
for u in uniques:
if u not in [0, 1, 2, 4]:
raise RuntimeError('unexpected label')
seg_new = np.zeros_like(img_npy)
seg_new[img_npy == 4] = 3
seg_new[img_npy == 2] = 1
seg_new[img_npy == 1] = 2
img_corr = sitk.GetImageFromArray(seg_new)
img_corr.CopyInformation(img)
sitk.WriteImage(img_corr, out_file)
def convert_labels_back_to_BraTS(seg: np.ndarray):
new_seg = np.zeros_like(seg)
new_seg[seg == 1] = 2
new_seg[seg == 3] = 4
new_seg[seg == 2] = 1
return new_seg
def load_convert_labels_back_to_BraTS(filename, input_folder, output_folder):
a = sitk.ReadImage(join(input_folder, filename))
b = sitk.GetArrayFromImage(a)
c = convert_labels_back_to_BraTS(b)
d = sitk.GetImageFromArray(c)
d.CopyInformation(a)
sitk.WriteImage(d, join(output_folder, filename))
def convert_folder_with_preds_back_to_BraTS_labeling_convention(input_folder: str, output_folder: str, num_processes: int = 12):
"""
reads all prediction files (nifti) in the input folder, converts the labels back to BraTS convention and saves the
"""
maybe_mkdir_p(output_folder)
nii = subfiles(input_folder, suffix='.nii.gz', join=False)
with multiprocessing.get_context("spawn").Pool(num_processes) as p:
p.starmap(load_convert_labels_back_to_BraTS, zip(nii, [input_folder] * len(nii), [output_folder] * len(nii)))
if __name__ == '__main__':
brats_data_dir = '/home/isensee/drives/E132-Rohdaten/BraTS_2021/training'
task_id = 137
task_name = "BraTS2021"
foldername = "Dataset%03.0d_%s" % (task_id, task_name)
# setting up nnU-Net folders
out_base = join(nnUNet_raw, foldername)
imagestr = join(out_base, "imagesTr")
labelstr = join(out_base, "labelsTr")
maybe_mkdir_p(imagestr)
maybe_mkdir_p(labelstr)
case_ids = subdirs(brats_data_dir, prefix='BraTS', join=False)
for c in case_ids:
shutil.copy(join(brats_data_dir, c, c + "_t1.nii.gz"), join(imagestr, c + '_0000.nii.gz'))
shutil.copy(join(brats_data_dir, c, c + "_t1ce.nii.gz"), join(imagestr, c + '_0001.nii.gz'))
shutil.copy(join(brats_data_dir, c, c + "_t2.nii.gz"), join(imagestr, c + '_0002.nii.gz'))
shutil.copy(join(brats_data_dir, c, c + "_flair.nii.gz"), join(imagestr, c + '_0003.nii.gz'))
copy_BraTS_segmentation_and_convert_labels_to_nnUNet(join(brats_data_dir, c, c + "_seg.nii.gz"),
join(labelstr, c + '.nii.gz'))
generate_dataset_json(out_base,
channel_names={0: 'T1', 1: 'T1ce', 2: 'T2', 3: 'Flair'},
labels={
'background': 0,
'whole tumor': (1, 2, 3),
'tumor core': (2, 3),
'enhancing tumor': (3, )
},
num_training_cases=len(case_ids),
file_ending='.nii.gz',
regions_class_order=(1, 2, 3),
license='see https://www.synapse.org/#!Synapse:syn25829067/wiki/610863',
reference='see https://www.synapse.org/#!Synapse:syn25829067/wiki/610863',
dataset_release='1.0')