Skip to content

Latest commit

 

History

History
47 lines (31 loc) · 1.79 KB

README.md

File metadata and controls

47 lines (31 loc) · 1.79 KB

DiffTransfer

TIMBRE TRANSFER USING IMAGE-TO-IMAGE DENOISING DIFFUSION IMPLICIT MODELS

Accompanying code to the paper Timbre transfer using image-to-image denoising diffusion implicit models [1].

For any question, please write at [email protected].

Dependencies

Tensorflow (>2.11), librosa, pretty_midi, os, numpy, essentia, frechet_audio_distance

Data generation

The model is trained using the StarNet dataset, freely available on Zenodo link

Network training

  • audio_utils.py --> contains shared audio utilities and functions
  • params.py --> Contains parameters shared along scripts
  • network_lib_attention.py --> Contains Denoising Diffusion Implicit Model Implementation
  • DiffTransfer.py --> Actually runs the training, takes the following arguments:
    • dataset_train_path: String, path to training data
    • desired_instrument: String, name of desired output instrument
    • conditioning_instrument: String, name of input instrument
    • GPU: number of GPU, in case you have multiple ones

Results computation

  • compute_eval_tracks_mixture.py
  • compute_eval_tracks_separate.py
  • compute_frechet.py
  • compute_jaccard.py
  • compute_listening_test_results.py
  • preprocess_tracks_listening_test.py

References

[1] Comanducci, Luca, Fabio Antonacci, and Augusto Sarti. "Timbre transfer using image-to-image denoising diffusion models. ISMIR International Society for Music Information Retrieval Conference arXiv