-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_adressa.py
330 lines (280 loc) · 16.5 KB
/
run_adressa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import time
import torch
import argparse
import numpy as np
# interactions
from interactions import Interactions
# from data_utils import generate_candidate
# from process_text import get_news_map_doc2vec, get_elements
# from dataset_DNS import ReadingNEWS, ReadingNEWSTest
# data utils
from utils import generate_candidate
from utils import get_news_map_doc2vec, get_elements
from utils import ReadingNEWS, ReadingNEWSTest
from torch.utils.data import DataLoader
# model
from transformers import get_linear_schedule_with_warmup, AdamW
# from dna_CNN import Tacnn
# from dna_element_V1 import Tacnn
# from dna_sentence_V1 import Tacnn
# from dna_news_V1 import Tacnn
# from dna_ele_sen_news import Tacnn
# from dna_ele_sen_news_tran import Tacnn
from HAN_DNS_time import D_HAN
# history summarization models comparison
# from dna_ele_sen_news_CNN import Tacnn
# from dna_ele_sen_news_RNN import Tacnn
# from dna_ele_sen_news_multiHead import Tacnn
# from dna_ele_sen_news_tran import Tacnn
class Recommender():
def __init__(self, n_iter=None, neg_samples=None, neg_samples_test=None, learning_rate=None,
l2=None, optimizers=None, t_total=None, model_args=None):
# model related
self._num_users = None
self._net = None
self.model_args = model_args
# learning related
self._n_iter = n_iter
self._neg_samples = neg_samples
self._neg_samples_test = neg_samples_test
self._learning_rate = learning_rate
self.weight_decay = l2
self.warmup_steps = model_args.warmup_steps
self.t_total = t_total
self._optimizers = optimizers
@property
def _initialized(self):
return self._net is not None
def _initialize(self, interactions):
self._num_users = interactions.num_users
self._num_items = interactions.num_items
self._net = D_HAN(self.model_args, self._num_users, self._num_items).to(device)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in self._net.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": self.weight_decay,
},
{"params": [p for n, p in self._net.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0},
]
self._optimizer = AdamW(optimizer_grouped_parameters, lr=self._learning_rate)
self.scheduler = get_linear_schedule_with_warmup(
self._optimizer, num_warmup_steps=self.warmup_steps * self.t_total, num_training_steps=self.t_total
)
para = sum([np.prod(list(p.size())) for p in self._net.parameters()])
print("The amount of D-HAN parameters:" + str(para), flush=True)
print('The size of D-HAN parameters: {:4f}M'.format(para * 8 / 1000 / 1000), flush=True)
def fit(self, train_loader, test_loader):
for epoch_num in range(0, self._n_iter): # epoch
t1 = time.time()
epoch_loss = self.train_epoch(train_loader)
t2 = time.time()
if (epoch_num) % 1 == 0:
HR, NDCG = self.test_epoch(test_loader, ks=10, epoch_num=epoch_num)
output_str = "Epoch %d [%.1f s]\tloss=%.4f," \
"HR@1=%.4f,HR@2=%.4f,HR@3=%.4f,HR@4=%.4f,HR@5=%.4f,HR@6=%.4f,HR@7=%.4f,HR@8=%.4f,HR@9=%.4f,HR@10=%.4f, " \
"NDCG@1=%.4f,NDCG@2=%.4f,NDCG@3=%.4f,NDCG@4=%.4f,NDCG@5=%.4f,NDCG@6=%.4f,NDCG@7=%.4f,NDCG@8=%.4f,NDCG@9=%.4f,NDCG@10=%.4f, [%.1f s]" % (
epoch_num + 1,
t2 - t1,
epoch_loss,
HR[0], HR[1], HR[2], HR[3], HR[4], HR[5], HR[6], HR[7], HR[8], HR[9],
NDCG[0], NDCG[1], NDCG[2], NDCG[3], NDCG[4], NDCG[5], NDCG[6], NDCG[7], NDCG[8], NDCG[9],
time.time() - t2)
print(output_str, flush=True)
def train_epoch(self,train_loader):
self._net.train()
epoch_loss = 0
for batch_idx, batch in enumerate(train_loader):
# train pos model
for x in batch: # to cuda or cpu
x.to(device)
# Here the negative sample is random sample
news_hist, news_element_hist, history, news_cand, news_element_cand, candidate, \
user, history_time, candidate_time, \
news_neg_id_can, news_neg_can, news_element_neg_can = batch
target_prediction, items_all, loss_ns = self._net(x=news_hist, x_element=news_element_hist, x_id=history,
can_embed=news_cand, can_element=news_element_cand, can_id=candidate,
user_var=user, history_time=history_time, candidate_time=candidate_time,
train=True,
can_id_list=news_neg_id_can, can_embedding=news_neg_can, can_ele_embedding=news_element_neg_can)
# DNS: dynamic negative sampling according to items_all
items_all = items_all.tolist()
neg_id_list = np.zeros((len(user), self._neg_samples), dtype=np.int64) # batch, N
neg_embedding = np.zeros((len(user), self._neg_samples, 64), dtype=np.float32)
neg_ele_embedding = np.zeros((len(user), self._neg_samples, 5, 64), dtype=np.float32)
for k, u in enumerate(user.tolist()):
items = items_all[k]
for i, item in enumerate(items):
neg_id_list[k, i] += item
news = newsMap[item]
news_temp = np.mean(news, axis=0)
neg_embedding[k, i] += news_temp
news_element_temp = elementsMap[item]
neg_ele_embedding[k, i] += news_element_temp
neg_embedding = torch.from_numpy(neg_embedding)
neg_ele_embedding = torch.from_numpy(neg_ele_embedding)
neg_id_list = torch.from_numpy(neg_id_list)
# DNS
results = []
for i in range(self._neg_samples):
negative_prediction = self._net(x=news_hist, x_element=news_element_hist, x_id=history,
can_embed=neg_embedding[:, i, :], can_element=neg_ele_embedding[:, i, :], can_id=neg_id_list[:, i],
user_var=user, history_time=history_time, candidate_time=candidate_time,
train=False)
results.append(negative_prediction)
neg_pre = torch.cat(results, 1)
# loss function
target_temp = torch.clamp(torch.sigmoid(target_prediction), min=1e-10, max=1-1e-10)
neg_temp = torch.clamp(1 - torch.sigmoid(neg_pre), min=1e-10, max=1-1e-10)
positive_loss = -torch.mean(torch.log(target_temp))
negative_loss = -torch.mean(torch.log(neg_temp))
loss = 1.0 * positive_loss + 1.0 * negative_loss + 1.0 * loss_ns
epoch_loss += loss.item()
loss.backward()
torch.nn.utils.clip_grad_norm_(self._net.parameters(), 1.0)
self._optimizer.step()
self._optimizer.zero_grad()
# if batch_idx > 0:
# break
epoch_loss /= (batch_idx + 1)
return epoch_loss
def test_epoch(self, test_loader, ks, epoch_num):
self._net.eval()
hr = [0] * ks
ndcg = [0] * ks
count = 0
for batch_idx, batch in enumerate(test_loader):
news_hist, news_element_hist, history, news_cand, news_element_cand, candidate, \
user, history_time, candidate_time, \
news_neg_id_can, news_neg_can, news_element_neg_can = batch
target_prediction = self._net(x = news_hist, x_element = news_element_hist, x_id = history,
can_embed=news_cand, can_element=news_element_cand, can_id=candidate,
user_var=user, history_time=history_time, candidate_time=candidate_time,
train=False)
results = []
config.fw_sen = None
for i in range(self._neg_samples_test):
negative_prediction = self._net(x = news_hist, x_element = news_element_hist, x_id = history,
can_embed=news_neg_can[:, i, :], can_element=news_element_neg_can[:, i, :], can_id=news_neg_id_can[:, i],
user_var=user, history_time=history_time, candidate_time=candidate_time,
train=False)
results.append(negative_prediction.cpu().detach().numpy())
results = [torch.from_numpy(t) for t in results]
neg_pre = torch.cat(results, 1).to(device)
predictions = torch.cat((neg_pre, target_prediction), 1) # batch,100
predictions = np.argsort(-predictions.cpu().detach().numpy(), axis=1)
for i in range(len(predictions)):
count += 1
oneline = predictions[i,:]
for k in range(ks):
rec = oneline[:k + 1]
if 99 in rec:
hr[k] += 1
for pos in range(k + 1):
if rec[pos] == 99:
ndcg[k] += 1 / np.log2(1 + pos + 1)
HR = []
NDCG = []
for k in range(ks):
HR.append(float(hr[k]) / float(count))
NDCG.append(float(ndcg[k]) / float(count))
config.fw_sen = None
return HR, NDCG
def get_args():
parser = argparse.ArgumentParser()
# adressa data files
parser.add_argument('--train_root', type=str, default='../data/adressa/userSeq_train')
parser.add_argument('--test_root', type=str, default='../data/adressa/userSeq_test')
parser.add_argument('--content_word', type=str, default='../data/adressa/news_id_content_split')
parser.add_argument('--content_word_w', type=str, default='../data/adressa/news_id_content_split.vec')
parser.add_argument('--element_root', type=str, default='../data/adressa/newsid_Entity_embed')
parser.add_argument('--element_root_w', type=str, default='../data/adressa/newsid_Entity_embed.vec')
parser.add_argument('--generate_seq', type=str, default='../adressa/generateSequence/')
parser.add_argument('--doc2vec_model', type=str, default='../data/adressa/doc2vec_addressa')
parser.add_argument('--candidate_root', type=str, default='../data/adressa/user_candidate')
## adressa data setting
parser.add_argument('--L', type=int, default=10, help='the number of history items')
parser.add_argument('--senK', type=int, default=20, help='number of sentences considered in each news item')
parser.add_argument('--neg_samples', type=int, default=3, help='The number of negative samples during training')
parser.add_argument('--neg_samples_test', type=int, default=99, help='The number of negative samples during test')
parser.add_argument('--normalization', type=str, default="meanstd", help='normalization methods used for padding') # meanstd\minmax\none
# training setting
parser.add_argument('--news_dim', type=int, default=64, help='the dimension size used to represent sentences')
parser.add_argument('--user_dim', type=int, default=64)
parser.add_argument('--element_dim', type=int, default=64)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--batch_size', type=int, default=4) # 256
parser.add_argument('--batch_size_test', type=int, default=4) # 10
parser.add_argument('--optimizers', type=str, default="adam") # adam\sgd\adadelta
parser.add_argument('--learning_rate', type=float, default=1e-3)
parser.add_argument("--warmup_steps", default=0.0, type=float, help="Linear warmup over warmup_steps.")
parser.add_argument('--l2', type=float, default=1e-4)
parser.add_argument('--n_iter', type=int, default=100) # 100
# parser.add_argument('--pop_neg', type=int, default=10)
parser.add_argument('--interval_or_abs', type=str, default='all',
help="The relation or absolute or both time embedding, select from ['interval', 'abs', 'all']")
# parser.add_argument('--sampling', type=str, default='static')
# v6
# parser.add_argument('--kernel_sizes', type=int, default=3)
# parser.add_argument('--kernel_num', type=int, default=64)
#
#
# # v2,V6,V7
parser.add_argument('--hidden_size', type=int, default=64)
parser.add_argument('--num_attention_heads', type=int, default=4, help='The number of attention heads in MHA')
parser.add_argument('--intermediate_size', type=int, default=256, help='The intermediate dimension size')
parser.add_argument('--hidden_dropout_prob', type=float, default=0.2)
parser.add_argument('--hidden_act', type=str, default='gelu', help='The activation function')
#
parser.add_argument('--layer_num', type=int, default=2, help='The number of layer to process sen, ele, news representation')
# parser.add_argument('--time_factor', type=float, default=0.01)
config = parser.parse_args()
return config
if __name__ == '__main__':
config = get_args()
print("model_config:"+str(config), flush=True)
USE_CUDA = torch.cuda.is_available() and True
device = torch.device("cuda" if USE_CUDA else "cpu")
print('using .... ', device)
np.random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
torch.backends.cudnn.deterministic = True # 保证每次结果一样
# load train(test)|test dataset
train = Interactions(config.train_root, config.generate_seq)
train.to_sequence(config.L)
test = Interactions(config.test_root, config.generate_seq, user_map=train.user_map, item_map=train.item_map)
print("train.num_users:" + str(train.num_users) + ",train.num_items:" + str(train.num_items), flush=True)
print("test.num_users:" + str(test.num_users) + ",test.num_items:" + str(test.num_items), flush=True)
# load news content |cal candidate neg samples
newsMap = get_news_map_doc2vec(test.item_map, config.senK, config.normalization,
config.content_word, config.content_word_w, config.doc2vec_model, hidden_dim=config.news_dim) # 20*64
elementsMap = get_elements(test.item_map, config.element_root, config.element_root_w)
train_candidate, test_candidate = generate_candidate(config.candidate_root)
# DataLoader
# negative samples in test are randomly sampled across all methods
# negative sample in train:
# 1. random sample
# 2. DNS: random sample 50 samples, and then use DNS to sample neg_sample
train_dataset = ReadingNEWS(args=config, sequences=train.sequences, targets=train.sequences.targets,
targets_time=train.sequences.targets_time,
newsMap=newsMap, elementsMap=elementsMap,
usercandidate=train_candidate, negs=config.neg_samples, senK=config.senK)
test_dataset = ReadingNEWSTest(args=config, sequences=train.test_sequences, targets=test.item_ids,
targets_time=test.timestamps,
newsMap=newsMap, elementsMap=elementsMap,
usercandidate=test_candidate, negs=config.neg_samples_test, senK=config.senK)
print("Define dataset finished.", flush=True)
train_loader = DataLoader(train_dataset, batch_size=config.batch_size, shuffle=True, pin_memory=False)
test_loader = DataLoader(test_dataset, batch_size=config.batch_size_test,shuffle=False, pin_memory=False)
print("Define dataloader finished, # train batch: %s %s, # test batch: %s %s"
%(len(train_loader), len(train_loader)*config.batch_size, len(test_loader), len(test_loader)*config.batch_size_test), flush=True)
# Set up the network and training parameters
t_total = len(train_loader) * config.n_iter
network = Recommender(n_iter=config.n_iter, neg_samples=config.neg_samples,
neg_samples_test = config.neg_samples_test, learning_rate=config.learning_rate,
l2=config.l2, optimizers=config.optimizers, t_total=t_total, model_args=config)
network._initialize(test)
print("Network initial finished.", flush=True)
network.fit(train_loader, test_loader)