-
Notifications
You must be signed in to change notification settings - Fork 14
/
train_mnist_vae.py
67 lines (47 loc) · 2.06 KB
/
train_mnist_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import keras
from keras import backend as K
from keras.layers import Dense, Flatten, Lambda, Reshape
from keras.models import Model
import src.utilities as U
BATCH_SIZE = 128
def define_VAE(optim='adagrad', latent_dim=2):
inputs = keras.layers.Input(shape=(28, 28, 1))
x = Flatten()(inputs)
enc_1 = Dense(400, activation='elu')(x)
enc_2 = Dense(256, activation='elu')(enc_1)
z_mu = Dense(latent_dim)(enc_2)
z_logsigma = Dense(latent_dim)(enc_2)
encoder = Model(inputs=inputs, outputs=z_mu) # represent the latent space by the mean
def sample_z(args):
mu, logsigma = args
return 0.5 * K.exp(logsigma / 2) * K.random_normal(shape=(K.shape(mu)[0], latent_dim)) + mu
z = Lambda(sample_z, output_shape=(latent_dim,))([z_mu, z_logsigma])
dec_input = keras.layers.Input(shape=(latent_dim,))
dec_1 = Dense(256, activation='elu')(dec_input)
dec_2 = Dense(400, activation='elu')(dec_1)
dec_output = Dense(784, activation='sigmoid')(dec_2)
dec_reshaped = Reshape((28, 28, 1))(dec_output)
decoder = Model(inputs=dec_input, outputs=dec_reshaped)
reconstruction = decoder(z)
VAE = Model(inputs=inputs, outputs=reconstruction)
def vae_loss(inputs, reconstruction):
x = K.flatten(inputs)
rec = K.flatten(reconstruction)
x_ent = keras.metrics.binary_crossentropy(x, rec)
kl_div = 0.5 * K.sum(K.exp(z_logsigma) + K.square(z_mu) - z_logsigma - 1, axis=-1)
return 28 * 28 * x_ent + kl_div
VAE.compile(optimizer=optim, loss=vae_loss)
return VAE, encoder, decoder
if __name__ == '__main__':
latent_dim = 2
x_train, y_train, x_test, y_test = U.get_mnist()
VAE, encoder, decoder = define_VAE(
optim=keras.optimizers.Adam(),
latent_dim=latent_dim,
)
VAE.fit(x_train, x_train,
epochs=50,
batch_size=BATCH_SIZE,
validation_data=(x_test, x_test))
encoder.save_weights('my_enc_weights_latent_dim_' + str(latent_dim) + '.h5')
decoder.save_weights('my_dec_weights_latent_dim_' + str(latent_dim) + '.h5')