-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
423 lines (356 loc) · 13.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
from __future__ import print_function
from collections import defaultdict, deque, OrderedDict
import datetime
import math
import itertools
import time
import torch
import torch.distributed as dist
import torch.backends.cudnn as cudnn
import errno
import os
import sys
from torch.utils.data.dataloader import default_collate
from torch.optim.lr_scheduler import _LRScheduler
from torch._six import inf
def all_reduce_tensor(tensor, op=dist.ReduceOp.SUM, world_size=1, norm=True):
with torch.no_grad():
tensor = tensor.detach()
dist.all_reduce(tensor, op)
if norm:
tensor.div_(world_size)
return tensor
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}',
'max mem: {memory:.0f}'
])
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
sys.stdout.flush()
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {}'.format(header, total_time_str))
def mkdir(path):
try:
os.makedirs(path)
except OSError as e:
if e.errno != errno.EEXIST:
raise
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(args):
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
rank = int(os.environ["RANK"])
world_size = int(os.environ['WORLD_SIZE'])
print(f"RANK and WORLD_SIZE in environment: {rank}/{world_size}")
else:
rank = -1
world_size = -1
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank)
torch.distributed.barrier()
setup_for_distributed(is_main_process())
if args.output_dir:
mkdir(args.output_dir)
# if args.model_id:
# mkdir(os.path.join('./models/', args.model_id))
def collate_func(batch):
'''Support different numbers of instance masks within a batch
'''
elem = batch[0]
elem_type = type(elem)
# print(elem_type)
if isinstance(elem, dict):
return {key: collate_func([d[key] for d in batch]) for key in elem}
elif isinstance(elem, list):
# check to make sure that the elements in batch have consistent size
it = iter(batch)
elem_size = len(next(it))
if isinstance(elem[0], torch.Tensor):
return [torch.stack(sample, dim=0) for sample in batch]
elif not all(len(elem) == elem_size for elem in it):
raise RuntimeError('each element in list of batch should be of equal size')
else:
transposed = zip(*batch)
return [collate_func(samples) for samples in transposed]
elif isinstance(elem, tuple):
# it = iter(batch)
# elem_size = len(next(it))
# if not all(len(elem) == elem_size for elem in it):
# raise RuntimeError('each element in list of batch should be of equal size')
transposed = zip(*batch)
return [collate_func(samples) for samples in transposed]
else:
return default_collate(batch)
def load_model(model, model_file, is_restore=False):
t_start = time.time()
if isinstance(model_file, str):
device = torch.device('cpu')
checkpoint = torch.load(model_file, map_location=device)
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
if 'model' in state_dict.keys():
state_dict = state_dict['model']
else:
state_dict = model_file
t_ioend = time.time()
if is_restore:
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:]
new_state_dict[name] = v
state_dict = new_state_dict
model.load_state_dict(state_dict, strict=False)
ckpt_keys = set(state_dict.keys())
own_keys = set(model.state_dict().keys())
missing_keys = own_keys - ckpt_keys
unexpected_keys = ckpt_keys - own_keys
if len(missing_keys) > 0:
print('Missing key(s) in state_dict: {}'.format(
', '.join('{}'.format(k) for k in missing_keys)))
if len(unexpected_keys) > 0:
print('Unexpected key(s) in state_dict: {}'.format(
', '.join('{}'.format(k) for k in unexpected_keys)))
del state_dict
t_end = time.time()
print(
"Load model from {}, Time usage:\n\tIO: {}, initialize parameters: {}".format(model_file,
t_ioend - t_start, t_end - t_ioend))
return model
class WarmUpPolyLRScheduler(_LRScheduler):
"""Decays the learning rate of each parameter group using a polynomial function
in the given total_iters. When last_epoch=-1, sets initial lr as lr.
Args:
optimizer (Optimizer): Wrapped optimizer.
total_iters (int): The number of steps that the scheduler decays the learning rate. Default: 5.
power (int): The power of the polynomial. Default: 1.0.
verbose (bool): If ``True``, prints a message to stdout for
each update. Default: ``False``.
"""
def __init__(self, optimizer, total_iters=5, power=1.0, last_epoch=-1, verbose=False,
min_lr=0, warmup=False, warmup_iters=0, warmup_ratio=0.1):
self.total_iters = total_iters
self.power = power
self.min_lr = min_lr
self.warmup = warmup
self.warmup_iters = warmup_iters
self.warmup_ratio = warmup_ratio
super().__init__(optimizer, last_epoch, verbose)
def get_lr(self):
if self.last_epoch == 0 or self.last_epoch > self.total_iters:
return [group["lr"] for group in self.optimizer.param_groups]
return self._get_closed_form_lr()
# decay_factor = ((1.0 - self.last_epoch / self.total_iters) / (1.0 - (self.last_epoch - 1) / self.total_iters)) ** self.power
# return [group["lr"] * decay_factor for group in self.optimizer.param_groups]
def _get_closed_form_lr(self):
if not self.warmup or self.last_epoch > self.warmup_iters:
coeff = (1 - self.last_epoch / self.total_iters) ** self.power
return [
(
(base_lr - self.min_lr) * coeff + self.min_lr
)
for base_lr in self.base_lrs
]
else:
coeff = (1 - self.last_epoch / self.warmup_iters) * (1 - self.warmup_ratio)
return [
(
base_lr * (1 - coeff)
)
for base_lr in self.base_lrs
]
def ampscaler_get_grad_norm(parameters, norm_type: float = 2.0) -> torch.Tensor:
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
if norm_type == inf:
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
else:
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(),
norm_type).to(device) for p in parameters]), norm_type)
return total_norm
class NativeScalerWithGradNormCount:
state_dict_key = "amp_scaler"
def __init__(self):
self._scaler = torch.cuda.amp.GradScaler()
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
self._scaler.scale(loss).backward(create_graph=create_graph)
if update_grad:
if clip_grad is not None:
assert parameters is not None
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
else:
self._scaler.unscale_(optimizer)
norm = ampscaler_get_grad_norm(parameters)
self._scaler.step(optimizer)
self._scaler.update()
else:
norm = None
return norm
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict)
class NativeScalerWithGradNormCount2:
state_dict_key = "amp_scaler"
def __init__(self):
self._scaler = torch.cuda.amp.GradScaler()
def __call__(self, loss, optimizer, clip_grad=None):
self._scaler.scale(loss).backward()
if clip_grad is not None:
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
all_params = itertools.chain(*[x["params"] for x in optimizer.param_groups])
norm = torch.nn.utils.clip_grad_norm_(all_params, clip_grad)
else:
self._scaler.unscale_(optimizer)
all_params = itertools.chain(*[x["params"] for x in optimizer.param_groups])
norm = ampscaler_get_grad_norm(all_params)
self._scaler.step(optimizer)
self._scaler.update()
return norm
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict)