-
Notifications
You must be signed in to change notification settings - Fork 0
/
AIRPORT.SIF
298 lines (232 loc) · 6.55 KB
/
AIRPORT.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
***************************
* SET UP THE INITIAL DATA *
***************************
NAME AIRPORT
* Problem:
* ********
* This problem is concerned with the localisation of airports in Brazil.
* We consider m balls in the real plane, whose centers are the coordinates
* of some Brazilian cities and whose radius were chosen such that the balls are
* disjoint. The problem is to find one point (xi, yi) on each ball, i=1,..,m,
* such that SUM(||(xi,yi) - (xj,yj)||) is minimum, where the sum involves all
* the pairs (i,j) such that 1 <= i <= m, 1 <= j <= m and i <> j.
* For this problem instance, we have m = 42 cities and n = 84 points,
* i.e, 42 nonlinear inequalities constraints and 84 variables.
* Source:
* Contribution from a LANCELOT user.
* SIF input : Rodrigo de Barros Nabholz & Maria Aparecida Diniz Ehrhardt
* November 1994, DMA - IMECC- UNICAMP
* Adaptation for CUTE: Ph. Toint, November 1994.
* classification SQR2-MN-84-42
* Problem data
IE N 42
IE N-1 41
IE 1 1
RE R1 0.09
RE R2 0.3
RE R3 0.09
RE R4 0.45
RE R5 0.5
RE R6 0.04
RE R7 0.1
RE R8 0.02
RE R9 0.02
RE R10 0.07
RE R11 0.4
RE R12 0.045
RE R13 0.05
RE R14 0.056
RE R15 0.36
RE R16 0.08
RE R17 0.07
RE R18 0.36
RE R19 0.67
RE R20 0.38
RE R21 0.37
RE R22 0.05
RE R23 0.4
RE R24 0.66
RE R25 0.05
RE R26 0.07
RE R27 0.08
RE R28 0.3
RE R29 0.31
RE R30 0.49
RE R31 0.09
RE R32 0.46
RE R33 0.12
RE R34 0.07
RE R35 0.07
RE R36 0.09
RE R37 0.05
RE R38 0.13
RE R39 0.16
RE R40 0.46
RE R41 0.25
RE R42 0.1
RE CX1 -6.3
RE CX2 -7.8
RE CX3 -9.0
RE CX4 -7.2
RE CX5 -5.7
RE CX6 -1.9
RE CX7 -3.5
RE CX8 -0.5
RE CX9 1.4
RE CX10 4.0
RE CX11 2.1
RE CX12 5.5
RE CX13 5.7
RE CX14 5.7
RE CX15 3.8
RE CX16 5.3
RE CX17 4.7
RE CX18 3.3
RE CX19 0.0
RE CX20 -1.0
RE CX21 -0.4
RE CX22 4.2
RE CX23 3.2
RE CX24 1.7
RE CX25 3.3
RE CX26 2.0
RE CX27 0.7
RE CX28 0.1
RE CX29 -0.1
RE CX30 -3.5
RE CX31 -4.0
RE CX32 -2.7
RE CX33 -0.5
RE CX34 -2.9
RE CX35 -1.2
RE CX36 -0.4
RE CX37 -0.1
RE CX38 -1.0
RE CX39 -1.7
RE CX40 -2.1
RE CX41 -1.8
RE CX42 0.0
RE CY1 8.0
RE CY2 5.1
RE CY3 2.0
RE CY4 2.6
RE CY5 5.5
RE CY6 7.1
RE CY7 5.9
RE CY8 6.6
RE CY9 6.1
RE CY10 5.6
RE CY11 4.9
RE CY12 4.7
RE CY13 4.3
RE CY14 3.6
RE CY15 4.1
RE CY16 3.0
RE CY17 2.4
RE CY18 3.0
RE CY19 4.7
RE CY20 3.4
RE CY21 2.3
RE CY22 1.5
RE CY23 0.5
RE CY24 -1.7
RE CY25 -2.0
RE CY26 -3.1
RE CY27 -3.5
RE CY28 -2.4
RE CY29 -1.3
RE CY30 0.0
RE CY31 -1.7
RE CY32 -2.1
RE CY33 -0.4
RE CY34 -2.9
RE CY35 -3.4
RE CY36 -4.3
RE CY37 -5.2
RE CY38 -6.5
RE CY39 -7.5
RE CY40 -6.4
RE CY41 -5.1
RE CY42 0.0
VARIABLES
DO I 1 N
X X(I)
X Y(I)
ND
GROUPS
DO I 1 N-1
I+ I+1 I 1
DO J I+1 N
XN OBJ1(I,J) X(I) 1.0 X(J) -1.0
XN OBJ2(I,J) Y(I) 1.0 Y(J) -1.0
ND
DO I 1 N
XL CONS(I)
ND
CONSTANTS
DO I 1 N
ZN AIRPORT CONS(I) R(I)
ND
BOUNDS
DO I 1 N
XL AIRPORT X(I) -10
XU AIRPORT X(I) 10
XL AIRPORT Y(I) -10
XU AIRPORT Y(I) 10
ND
ELEMENT TYPE
EV DIFSQR V
EP DIFSQR W
ELEMENT USES
DO I 1 N
XT A(I) DIFSQR
ZV A(I) V X(I)
ZP A(I) W CX(I)
ND
DO I 1 N
XT B(I) DIFSQR
ZV B(I) V Y(I)
ZP B(I) W CY(I)
ND
GROUP TYPE
GV SQUARE ALPHA
GROUP USES
DO I 1 N-1
I+ I+1 I 1
DO J I+1 N
XT OBJ1(I,J) SQUARE
XT OBJ2(I,J) SQUARE
ND
DO I 1 N
XE CONS(I) A(I) 1.0 B(I) 1.0
ND
OBJECT BOUND
LO AIRPORT 0.0
* Solution
*LO SOLTN 47952.695811
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS AIRPORT
TEMPORARIES
R DIF
INDIVIDUALS
T DIFSQR
A DIF V - W
F DIF*DIF
G V 2.0*DIF
H V V 2.0
ENDATA
*********************
* SET UP THE GROUPS *
* ROUTINE *
*********************
GROUPS AIRPORT
INDIVIDUALS
T SQUARE
F ALPHA*ALPHA
G ALPHA+ALPHA
H 2.0
ENDATA