-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdiffusion.py
246 lines (219 loc) · 10 KB
/
diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import torch
from torch import nn
def _i(tensor, t, x):
r"""Index tensor using t and format the output according to x.
"""
shape = (x.size(0), ) + (1, ) * (x.ndim - 1)
return tensor.to(t.device)[t].view(shape).to(x)
def beta_schedule(schedule,
num_timesteps=1000,
init_beta=None,
last_beta=None) -> torch.Tensor:
if schedule == 'linear_sd':
return torch.linspace(
init_beta**0.5, last_beta**0.5, num_timesteps,
dtype=torch.float64)**2
else:
raise ValueError(f'Unsupported schedule: {schedule}')
class GaussianDiffusion(nn.Module):
r""" Diffusion Model for DDIM.
"Denoising diffusion implicit models." by Song, Jiaming, Chenlin Meng, and Stefano Ermon.
See https://arxiv.org/abs/2010.02502
"""
def __init__(self,
betas,
mean_type='eps',
var_type='learned_range',
loss_type='mse',
epsilon=1e-12,
rescale_timesteps=False
) -> None:
super().__init__()
# check input
if not isinstance(betas, torch.DoubleTensor):
betas = torch.tensor(betas, dtype=torch.float64)
assert min(betas) > 0 and max(betas) <= 1
assert mean_type in ['x0', 'x_{t-1}', 'eps']
assert var_type in [
'learned', 'learned_range', 'fixed_large', 'fixed_small'
]
assert loss_type in [
'mse', 'rescaled_mse', 'kl', 'rescaled_kl', 'l1', 'rescaled_l1',
'charbonnier'
]
self.betas = betas
self.num_timesteps = len(betas)
self.mean_type = mean_type
self.var_type = var_type
self.loss_type = loss_type
self.epsilon = epsilon
self.rescale_timesteps = rescale_timesteps
# alphas
alphas = 1 - self.betas
self.register_buffer('alphas_cumprod', torch.cumprod(alphas, dim=0))
self.register_buffer('alphas_cumprod_prev', torch.cat([alphas.new_ones([1]), self.alphas_cumprod[:-1]]))
self.register_buffer('alphas_cumprod_next', torch.cat([self.alphas_cumprod[1:], alphas.new_zeros([1])]))
# q(x_t | x_{t-1})
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(self.alphas_cumprod))
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1.0 - self.alphas_cumprod))
self.register_buffer('log_one_minus_alphas_cumprod', torch.log(1.0 - self.alphas_cumprod))
self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1.0 / self.alphas_cumprod))
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1.0 / self.alphas_cumprod - 1))
# q(x_{t-1} | x_t, x_0)
self.register_buffer('posterior_variance',betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod))
self.register_buffer('posterior_log_variance_clipped',torch.log(self.posterior_variance.clamp(1e-20)))
self.register_buffer('posterior_mean_coef1',betas * torch.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod))
self.register_buffer('posterior_mean_coef2',(1.0 - self.alphas_cumprod_prev) * torch.sqrt(alphas) / (1.0 - self.alphas_cumprod))
def q_sample(self,
x_start: torch.Tensor,
t: torch.Tensor,
noise: torch.Tensor = None
) -> torch.Tensor:
if noise is None:
noise = torch.randn_like(x_start)
return (_i(self.sqrt_alphas_cumprod, t, x_start) * x_start +
_i(self.sqrt_one_minus_alphas_cumprod, t, x_start) * noise)
def p_mean_variance(self,
xt,
t,
model,
model_kwargs={},
clamp=None,
percentile=None,
guide_scale=None):
r"""Distribution of p(x_{t-1} | x_t).
"""
# predict distribution
if guide_scale is None:
out = model(xt, self._scale_timesteps(t), **model_kwargs)
else:
# classifier-free guidance
# (model_kwargs[0]: conditional kwargs; model_kwargs[1]: non-conditional kwargs)
assert isinstance(model_kwargs, list) and len(model_kwargs) == 2
y_out = model(xt, self._scale_timesteps(t), model_kwargs[0]['y']).sample
u_out = model(xt, self._scale_timesteps(t), model_kwargs[1]['y']).sample
dim = y_out.size(1) if self.var_type.startswith(
'fixed') else y_out.size(1) // 2
a = u_out[:, :dim]
b = guide_scale * (y_out[:, :dim] - u_out[:, :dim])
c = y_out[:, dim:]
out = torch.cat([a + b, c], dim=1)
# compute variance
if self.var_type == 'fixed_small':
var = _i(self.posterior_variance, t, xt)
log_var = _i(self.posterior_log_variance_clipped, t, xt)
# compute mean and x0
if self.mean_type == 'eps':
x0 = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - _i(
self.sqrt_recipm1_alphas_cumprod, t, xt) * out
mu, _, _ = self.q_posterior_mean_variance(x0, xt, t)
# restrict the range of x0
if percentile is not None:
assert percentile > 0 and percentile <= 1 # e.g., 0.995
s = torch.quantile(
x0.flatten(1).abs(), percentile,
dim=1).clamp_(1.0).view(-1, 1, 1, 1)
x0 = torch.min(s, torch.max(-s, x0)) / s
elif clamp is not None:
x0 = x0.clamp(-clamp, clamp)
return mu, var, log_var, x0
def q_posterior_mean_variance(self, x0, xt, t):
r"""Distribution of q(x_{t-1} | x_t, x_0).
"""
mu = _i(self.posterior_mean_coef1, t, xt) * x0 + _i(
self.posterior_mean_coef2, t, xt) * xt
var = _i(self.posterior_variance, t, xt)
log_var = _i(self.posterior_log_variance_clipped, t, xt)
return mu, var, log_var
@torch.no_grad()
def ddim_sample(self,
xt,
t,
model,
model_kwargs={},
clamp=None,
percentile=None,
condition_fn=None,
guide_scale=None,
ddim_timesteps=20,
eta=0.0):
r"""Sample from p(x_{t-1} | x_t) using DDIM.
- condition_fn: for classifier-based guidance (guided-diffusion).
- guide_scale: for classifier-free guidance (glide/dalle-2).
"""
stride = self.num_timesteps // ddim_timesteps
# predict distribution of p(x_{t-1} | x_t)
_, _, _, x0 = self.p_mean_variance(xt, t, model, model_kwargs, clamp,
percentile, guide_scale)
if condition_fn is not None:
# x0 -> eps
alpha = _i(self.alphas_cumprod, t, xt)
eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / _i(
self.sqrt_recipm1_alphas_cumprod, t, xt)
eps = eps - (1 - alpha).sqrt() * condition_fn(
xt, self._scale_timesteps(t), **model_kwargs)
# eps -> x0
x0 = _i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - _i(
self.sqrt_recipm1_alphas_cumprod, t, xt) * eps
# derive variables
eps = (_i(self.sqrt_recip_alphas_cumprod, t, xt) * xt - x0) / _i(
self.sqrt_recipm1_alphas_cumprod, t, xt)
alphas = _i(self.alphas_cumprod, t, xt)
alphas_prev = _i(self.alphas_cumprod, (t - stride).clamp(0), xt)
a = (1 - alphas_prev) / (1 - alphas)
b = (1 - alphas / alphas_prev)
sigmas = eta * torch.sqrt(a * b)
# random sample
noise = torch.randn_like(xt)
direction = torch.sqrt(1 - alphas_prev - sigmas**2) * eps
mask = t.ne(0).float().view(-1, *((1, ) * (xt.ndim - 1)))
xt_1 = torch.sqrt(alphas_prev) * x0 + direction + mask * sigmas * noise
return xt_1, x0
@torch.no_grad()
def ddim_sample_loop(self,
noise,
model,
model_kwargs={},
clamp=None,
percentile=None,
condition_fn=None,
guide_scale=None,
ddim_timesteps=20,
eta=0.0,
bar: bool = False,
t_start: int = 0
):
# prepare input
b = noise.size(0)
xt = noise
# diffusion process (TODO: clamp is inaccurate! Consider replacing the stride by explicit prev/next steps)
steps = (1 + torch.arange(0, self.num_timesteps,
self.num_timesteps // ddim_timesteps)).clamp(
0, self.num_timesteps - 1)
if t_start > 0:
steps = steps[:t_start]
steps = steps.flip(0)
if bar:
from tqdm.auto import tqdm
steps = tqdm(steps, dynamic_ncols=True)
for step in steps:
t = torch.full((b, ), step, dtype=torch.long, device=xt.device)
xt, _ = self.ddim_sample(xt, t, model, model_kwargs, clamp,
percentile, condition_fn, guide_scale,
ddim_timesteps, eta)
return xt
def _scale_timesteps(self, t):
if self.rescale_timesteps:
return t.float() * 1000.0 / self.num_timesteps
return t
@torch.no_grad()
def stochastic_encode(self, x0, t, timesteps, noise=None):
if noise is None:
noise = torch.randn_like(x0)
c = self.num_timesteps // timesteps
ddim_timesteps = torch.tensor((list(range(0, self.num_timesteps, c))), device=self.alphas_cumprod.device) + 1
ddim_alphas = self.alphas_cumprod[ddim_timesteps]
sqrt_alphas_cumprod = torch.sqrt(ddim_alphas)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - ddim_alphas)
return (_i(sqrt_alphas_cumprod, t, x0) * x0 +
_i(sqrt_one_minus_alphas_cumprod, t, x0) * noise)