-
Notifications
You must be signed in to change notification settings - Fork 419
/
Copy pathdemo.py
93 lines (77 loc) · 2.73 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import os
import cv2
import numpy as np
from torch.multiprocessing import Pool
from darknet import Darknet19
import utils.yolo as yolo_utils
import utils.network as net_utils
from utils.timer import Timer
import cfgs.config as cfg
# This prevents deadlocks in the data loader, caused by
# some incompatibility between pytorch and cv2 multiprocessing.
# See https://github.com/pytorch/pytorch/issues/1355.
cv2.setNumThreads(0)
def preprocess(fname):
# return fname
image = cv2.imread(fname)
im_data = np.expand_dims(
yolo_utils.preprocess_test((image, None, cfg.multi_scale_inp_size), 0)[0], 0)
return image, im_data
# hyper-parameters
# npz_fname = 'models/yolo-voc.weights.npz'
# h5_fname = 'models/yolo-voc.weights.h5'
trained_model = cfg.trained_model
# trained_model = os.path.join(
# cfg.train_output_dir, 'darknet19_voc07trainval_exp3_158.h5')
thresh = 0.5
im_path = 'demo'
# ---
net = Darknet19()
net_utils.load_net(trained_model, net)
# net.load_from_npz(npz_fname)
# net_utils.save_net(h5_fname, net)
net.cuda()
net.eval()
print('load model succ...')
t_det = Timer()
t_total = Timer()
im_fnames = sorted((fname
for fname in os.listdir(im_path)
if os.path.splitext(fname)[-1] == '.jpg'))
im_fnames = (os.path.join(im_path, fname) for fname in im_fnames)
pool = Pool(processes=1)
for i, (image, im_data) in enumerate(pool.imap(
preprocess, im_fnames, chunksize=1)):
t_total.tic()
im_data = net_utils.np_to_variable(
im_data, is_cuda=True, volatile=True).permute(0, 3, 1, 2)
t_det.tic()
bbox_pred, iou_pred, prob_pred = net(im_data)
det_time = t_det.toc()
# to numpy
bbox_pred = bbox_pred.data.cpu().numpy()
iou_pred = iou_pred.data.cpu().numpy()
prob_pred = prob_pred.data.cpu().numpy()
# print bbox_pred.shape, iou_pred.shape, prob_pred.shape
bboxes, scores, cls_inds = yolo_utils.postprocess(
bbox_pred, iou_pred, prob_pred, image.shape, cfg, thresh)
im2show = yolo_utils.draw_detection(image, bboxes, scores, cls_inds, cfg)
if im2show.shape[0] > 1100:
im2show = cv2.resize(im2show,
(int(1000. *
float(im2show.shape[1]) / im2show.shape[0]),
1000))
cv2.imshow('test', im2show)
total_time = t_total.toc()
# wait_time = max(int(60 - total_time * 1000), 1)
cv2.waitKey(0)
if i % 1 == 0:
format_str = 'frame: %d, ' \
'(detection: %.1f Hz, %.1f ms) ' \
'(total: %.1f Hz, %.1f ms)'
print((format_str % (
i,
1. / det_time, det_time * 1000,
1. / total_time, total_time * 1000)))
t_total.clear()
t_det.clear()