You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
if input just contains 'image' as non-list but text as a list, it runs without errors but the to-be-tokenized text will be '{}'.format(data[self.column_map['text']]). Is it supposed to be so?
@lonestar234028
code position:
https://github.com/lonestar234028/modelscope/blob/master/modelscope/preprocessors/ofa/visual_question_answering.py#L113
call stack log lines:
/root/code/nlvr/modelscope/reason_step_huge/test_ok_vqa_with_rationals_retri │
│ eval.py:157 in │
│ │
│ 154 │ │ │ │ q_and_a.update({"question_id":int(q.question_id)}) │
│ 155 │ │ │ │ input_batch.append(input_from_question(q)) │
│ 156 │ │ │ │ output_batch.append(q_and_a) │
│ ❱ 157 │ │ │ answer_batch = ofa_pipe(input_batch) │
│ 158 │ │ │ for a, p in zip(answer_batch, output_batch): │
│ 159 │ │ │ │ p.update({"answer" :a[OutputKeys.TEXT][0]}) │
│ 160 │ │ │ │ res.append(p) │
│ │
│ /opt/conda/lib/python3.7/site-packages/modelscope/pipelines/base.py:189 in │
│ call │
│ │
│ 186 │ │ │ if batch_size is None: │
│ 187 │ │ │ │ output = [] │
│ 188 │ │ │ │ for ele in input: │
│ ❱ 189 │ │ │ │ │ output.append(self._process_single(ele, *args, **k │
│ 190 │ │ │ else: │
│ 191 │ │ │ │ output = self._process_batch(input, batch_size, **kwar │
│ 192 │
│ │
│ /opt/conda/lib/python3.7/site-packages/modelscope/pipelines/base.py:228 in │
│ _process_single │
│ │
│ 225 │ │ import copy │
│ 226 │ │ │
│ 227 │ │ all_text_encoders_input = [] │
│ ❱ 228 │ │ out = self.preprocess(input, **preprocess_params) │
│ 229 │ │ if isinstance(input['text'], list): │
│ 230 │ │ │ for item in input['text']: │
│ 231 │ │ │ │ tmp_e = copy.deepcopy(input) │
│ │
│ /opt/conda/lib/python3.7/site-packages/modelscope/pipelines/base.py:365 in │
│ preprocess │
│ │
│ 362 │ │ assert self.preprocessor is not None, 'preprocess method shoul │
│ 363 │ │ assert not isinstance(self.preprocessor, List),\ │
│ 364 │ │ │ 'default implementation does not support using multiple pr │
│ ❱ 365 │ │ return self.preprocessor(inputs, **preprocess_params) │
│ 366 │ │
│ 367 │ def forward(self, inputs: Dict[str, Any], │
│ 368 │ │ │ │ **forward_params) -> Dict[str, Any]: │
│ │
│ /opt/conda/lib/python3.7/site-packages/modelscope/preprocessors/multi_modal. │
│ py:147 in call │
│ │
│ 144 │ │ │ data = input │
│ 145 │ │ else: │
│ 146 │ │ │ data = self._build_dict(input) │
│ ❱ 147 │ │ sample = self.preprocess(data) │
│ 148 │ │ str_data = dict() │
│ 149 │ │ for k, v in data.items(): │
│ 150 │ │ │ str_data[k] = str(v) │
│ │
│ /opt/conda/lib/python3.7/site-packages/modelscope/preprocessors/ofa/visual_q │
│ uestion_answering.py:47 in call │
│ │
│ 44 │ │ if self.mode == ModeKeys.TRAIN: │
│ 45 │ │ │ return self._build_train_sample(data) │
│ 46 │ │ else: │
│ ❱ 47 │ │ │ return self._build_infer_sample(data) │
│ 48 │ │
│ 49 │ def _build_train_sample(self, data: Dict[str, Any]) -> Dict[str, A │
│ 50 │ │ r""" │
│ │
│ /opt/conda/lib/python3.7/site-packages/modelscope/preprocessors/ofa/visual_q │
│ uestion_answering.py:140 in _build_infer_sample │
│ │
│ 137 │ def _build_infer_sample(self, data: Dict[str, Any]) -> Dict[str, A │
│ 138 │ │ img_info = data[self.column_map['image']] │
│ 139 │ │ if isinstance(img_info, list): │
│ ❱ 140 │ │ │ return self._build_infer_sample_list(data) │
│ 141 │ │ image = self.get_img_pil(img_info) │
│ 142 │ │ │
│ 143 │ │ patch_image = self.patch_resize_transform(image) │
│ │
│ /opt/conda/lib/python3.7/site-packages/modelscope/preprocessors/ofa/visual_q │
│ uestion_answering.py:113 in _build_infer_sample_list │
│ │
│ 110 │ │
│ 111 │ def _build_infer_sample_list(self, data: Dict[str, Any]) -> Dict[s │
│ 112 │ │ image0 = self.get_img_pil(data[self.column_map['image']][0]) │
│ ❱ 113 │ │ image1 = self.get_img_pil(data[self.column_map['image']][1]) │
│ 114 │ │ patch_image = self.patch_resize_transform(image0) │
│ 115 │ │ patch_image_2 = self.patch_resize_transform(image1) │
│ 116 │ │ text = ' {}'.format(data[self.column_map['text']])
The text was updated successfully, but these errors were encountered: