forked from NVIDIA/modulus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscore_samples.py
141 lines (113 loc) · 4.11 KB
/
score_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Score the generated samples
Saves a netCDF of crps and other scores. Depends on time, but space and ensemble have been reduced::
netcdf scores {
dimensions:
metric = 4 ;
time = 205 ;
variables:
double eastward_wind_10m(metric, time) ;
eastward_wind_10m:_FillValue = NaN ;
double maximum_radar_reflectivity(metric, time) ;
maximum_radar_reflectivity:_FillValue = NaN ;
double northward_wind_10m(metric, time) ;
northward_wind_10m:_FillValue = NaN ;
double temperature_2m(metric, time) ;
temperature_2m:_FillValue = NaN ;
int64 time(time) ;
time:units = "hours since 1990-01-01" ;
time:calendar = "standard" ;
string metric(metric) ;
}
"""
# %%
import sys
import os
import dask.diagnostics
import dask
import multiprocessing
import tqdm
import argparse
from functools import partial
import xarray as xr
try:
import xskillscore
except ImportError:
raise ImportError("xskillscore not installed. Try `pip install xskillscore`")
def open_samples(f):
"""
Open prediction and truth samples from a dataset file.
Parameters:
f: Path to the dataset file.
Returns:
tuple: A tuple containing truth, prediction, and root datasets.
"""
root = xr.open_dataset(f)
pred = xr.open_dataset(f, group="prediction")
truth = xr.open_dataset(f, group="truth")
pred = pred.merge(root)
truth = truth.merge(root)
truth = truth.set_coords(["lon", "lat"])
pred = pred.set_coords(["lon", "lat"])
return truth, pred, root
# compute metrics in parallel for performance reasons
def process(i, path, n_ensemble):
truth, pred, root = open_samples(path)
truth = truth.isel(time=slice(i, i + 1)).load()
if n_ensemble > 0:
pred = pred.isel(time=slice(i, i + 1), ensemble=slice(0, n_ensemble))
pred = pred.load()
dim = ["x", "y"]
a = xskillscore.rmse(truth, pred.mean("ensemble"), dim=dim)
b = xskillscore.crps_ensemble(truth, pred, member_dim="ensemble", dim=dim)
c = pred.std("ensemble").mean(dim)
crps_mean = xskillscore.crps_ensemble(
truth,
pred.mean("ensemble").expand_dims("ensemble"),
member_dim="ensemble",
dim=dim,
)
metrics = (
xr.concat([a, b, c, crps_mean], dim="metric")
.assign_coords(metric=["rmse", "crps", "std_dev", "mae"])
.load()
)
return metrics
def main(path: str, output: str, n_ensemble: int == -1):
truth, pred, root = open_samples(path)
with multiprocessing.Pool(32) as pool:
metrics = []
for metric in tqdm.tqdm(
pool.imap(
partial(process, path=path, n_ensemble=n_ensemble),
range(truth.sizes["time"]),
),
total=truth.sizes["time"],
):
metrics.append(metric)
metrics = xr.concat(metrics, dim="time")
metrics.attrs["n_ensemble"] = n_ensemble
# to netcdf with single threaded scheduler to avoid deadlocks
with dask.config.set(scheduler="single-threaded"):
metrics.to_netcdf(output, mode="w")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("path", type=str)
parser.add_argument("output", type=str)
parser.add_argument("--n-ensemble", type=int, default=-1)
args = parser.parse_args()
main(args.path, args.output, args.n_ensemble)