-
Notifications
You must be signed in to change notification settings - Fork 5
/
NARS.metta
executable file
·491 lines (452 loc) · 30 KB
/
NARS.metta
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
!(nop (pragma! load silent))
;; stdlib extension
(: If (-> Bool Atom Atom))
(= (If True $then) $then)
(= (If False $then) ())
(: If (-> Bool Atom Atom Atom))
(= (If $cond $then $else) (if $cond $then $else))
(= (TupleConcat $Ev1 $Ev2) (collapse (superpose ((superpose $Ev1) (superpose $Ev2)))))
(= (max $1 $2) (If (> $1 $2) $1 $2))
(= (min $1 $2) (If (< $1 $2) $1 $2))
(= (abs $x) (If (< $x 0) (- 0 $x) $x))
(: sequential (-> Expression %Undefined% ))
(= (sequential $1) (superpose $1))
(: do (-> Expression %Undefined% ))
(= (do $1) (case $1 ()))
;(= (TupleCount ()) 0)
;(= (TupleCount (1)) 1)
;(= (BuildTupleCounts $TOld $C $N)
; (let $T (collapse (superpose (1 (superpose $TOld))))
; (superpose ((add-atom &self (= (TupleCount $T) (+ $C 2)))
; (If (< $C $N) (BuildTupleCounts $T (+ $C 1) $N))))))*/
(= (TupleCount $list) (length $list))
(: CountElement (-> Expression Number))
(= (CountElement $x) (case $x (($y 1))))
;;Build for count up to 100 (takes a few sec but it is worth it if space or generally collapse counts are often needed)
;!(BuildTupleCounts (1) 0 100)
(: CollapseCardinality (-> Expression Number))
(= (CollapseCardinality $expression) (TupleCount (collapse (CountElement $expression))))
;; Truth functions
(= (Truth_c2w $c) (/ $c (- 1 $c)))
(= (Truth_w2c $w) (/ $w (+ $w 1)))
(= (Truth_Deduction ($f1 $c1) ($f2 $c2)) ((* $f1 $f2) (* (* $f1 $f2) (* $c1 $c2))))
(= (Truth_Abduction ($f1 $c1) ($f2 $c2)) ($f2 (Truth_w2c (* (* $f1 $c1) $c2))))
(= (Truth_Induction $T1 $T2) (Truth_Abduction $T2 $T1))
(= (Truth_Exemplification ($f1 $c1) ($f2 $c2)) (1.0 (Truth_w2c (* (* $f1 $f2) (* $c1 $c2)))))
(= (Truth_StructuralDeduction $T) (Truth_Deduction $T (1.0 0.9)))
(= (Truth_Negation ($f $c)) ((- 1 $f) $c))
(= (Truth StructuralDeductionNegated $T) (Truth_Negation (Truth_StructuralDeduction $T)))
(= (Truth_Intersection ($f1 $c1) ($f2 $c2)) ((* $f1 $f2) (* $c1 $c2)))
(= (Truth_StructuralIntersection $T) (Truth_Intersection $T (1.0 0.9)))
(= (Truth_or $a $b) (- 1 (* (- 1 $a) (- 1 $b))))
(= (Truth_Comparison ($f1 $c1) ($f2 $c2)) (let $f0 (Truth_or $f1 $f2) ((If (== $f0 0.0) 0.0 (/ (* $f1 $f2) $f0)) (Truth_w2c (* $f0 (* $c1 $c2))))))
(= (Truth_Analogy ($f1 $c1) ($f2 $c2)) ((* $f1 $f2) (* (* $c1 $c2) $f2)))
(= (Truth_Resemblance ($f1 $c1) ($f2 $c2)) ((* $f1 $f2) (* (* $c1 $c2) (Truth_or $f1 $f2))))
(= (Truth_Union ($f1 $c1) ($f2 $c2)) ((Truth_or $f1 $f2) (* $c1 $c2)))
(= (Truth_Difference ($f1 $c1) ($f2 $c2)) ((* $f1 (- 1 $f2)) (* $c1 $c2)))
(= (Truth_DecomposePNN ($f1 $c1) ($f2 $c2)) (let $fn (* $f1 (- 1 $f2)) ((- 1 $fn) (* $fn (* $c1 $c2)))))
(= (Truth_DecomposeNPP ($f1 $c1) ($f2 $c2)) (let $f (* (- 1 $f1) $f2) ($f (* $f (* $c1 $c2)))))
(= (Truth_DecomposePNP ($f1 $c1) ($f2 $c2)) (let $f (* $f1 (- 1 $f2)) ($f (* $f (* $c1 $c2)))))
(= (Truth_DecomposePPP $v1 $v2) (Truth_DecomposeNPP (Truth_Negation $v1) $v2))
(= (Truth_DecomposeNNN ($f1 $c1) ($f2 $c2)) (let $fn (* (- 1 $f1) (- 1 $f2)) ((- 1 $fn) (* $fn (* $c1 $c2)))))
(= (Truth_Eternalize ($f $c)) ($f (Truth_w2c $c)))
(= (Truth_Revision ($f1 $c1) ($f2 $c2))
(let* (($w1 (Truth_c2w $c1)) ($w2 (Truth_c2w $c2)) ($w (+ $w1 $w2))
($f (/ (+ (* $w1 $f1) (* $w2 $f2)) $w)) ($c (Truth_w2c $w)))
((min 1.00 $f) (min 0.99 (max (max $c $c1) $c2)))))
(= (Truth_Expectation ($f $c)) (+ (* $c (- $f 0.5)) 0.5))
;;NAL-1
;;!Syllogistic rules for Inheritance:
(= (|- (($a --> $b) $T1) (($b --> $c) $T2)) (($a --> $c) (Truth_Deduction $T1 $T2)))
(= (|- (($a --> $b) $T1) (($a --> $c) $T2)) (($c --> $b) (Truth_Induction $T1 $T2)))
(= (|- (($a --> $c) $T1) (($b --> $c) $T2)) (($b --> $a) (Truth_Abduction $T1 $T2)))
(= (|- (($a --> $b) $T1) (($b --> $c) $T2)) (($c --> $a) (Truth_Exemplification $T1 $T2)))
;;NAL-2
;;!Rules for Similarity:
(= (|- (($S <-> $P) $T)) (($P <-> $S) (Truth_StructuralIntersection $T)))
(= (|- (($M <-> $P) $T1) (($S <-> $M) $T2)) (($S <-> $P) (Truth_Resemblance $T1 $T2)))
(= (|- (($P --> $M) $T1) (($S --> $M) $T2)) (($S <-> $P) (Truth_Comparison $T1 $T2)))
(= (|- (($M --> $P) $T1) (($M --> $S) $T2)) (($S <-> $P) (Truth_Comparison $T1 $T2)))
(= (|- (($M --> $P) $T1) (($S <-> $M) $T2)) (($S --> $P) (Truth_Analogy $T1 $T2)))
(= (|- (($P --> $M) $T1) (($S <-> $M) $T2)) (($P --> $S) (Truth_Analogy $T1 $T2)))
;;!Dealing with properties and instances:
(= (|- (($S --> ({ $P })) $T)) (($S <-> ({ $P })) (Truth_StructuralIntersection $T)))
(= (|- ((([ $S ]) --> $P) $T)) ((([ $S ]) <-> $P) (Truth_StructuralIntersection $T)))
(= (|- ((({ $M }) --> $P) $T1) (($S <-> $M) $T2)) ((({ $S }) --> $P) (Truth_Analogy $T1 $T2)))
(= (|- (($P --> ([ $M ])) $T1) (($S <-> $M) $T2)) (($P --> ([ $S ])) (Truth_Analogy $T1 $T2)))
(= (|- ((({ $A }) <-> ({ $B }))) ($A <-> $B) (Truth_StructuralIntersection $T)))
(= (|- ((([ $A ]) <-> ([ $B ]))) ($A <-> $B) (Truth_StructuralIntersection $T)))
;;NAL-3
;;!Set decomposition:
(= (|- ((({ $A $B }) --> $M) $T)) ((({ $A }) --> $M) (Truth_StructuralDeduction $T)))
(= (|- ((({ $A $B }) --> $M) $T)) ((({ $B }) --> $M) (Truth_StructuralDeduction $T)))
(= (|- ((M --> ([ $A $B ])) $T)) ((M --> ([ $A ])) (Truth_StructuralDeduction $T)))
(= (|- ((M --> ([ $A $B ])) $T)) ((M --> ([ $B ])) (Truth_StructuralDeduction $T)))
;;!Extensional and intensional intersection decomposition:
(= (|- ((($S | $P) --> $M) $T)) (($S --> $M) (Truth_StructuralDeduction $T)))
(= (|- (($M --> ($S & $P)) $T)) (($M --> $S) (Truth_StructuralDeduction $T)))
(= (|- ((($S | $P) --> $M) $T)) (($P --> $M) (Truth_StructuralDeduction $T)))
(= (|- (($M --> ($S & $P)) $T)) (($M --> $P) (Truth_StructuralDeduction $T)))
(= (|- ((($A ~ $S) --> $M) $T)) (($A --> $M) (Truth_StructuralDeduction $T)))
(= (|- (($M --> ($B - $S)) $T)) (($M --> $B) (Truth_StructuralDeduction $T)))
(= (|- ((($A ~ $S) --> $M) $T)) (($S --> $M) (Truth_StructuralDeductionNegated $T)))
(= (|- (($M --> ($B - $S)) $T)) (($M --> $S) (Truth_StructuralDeductionNegated $T)))
;;!Extensional and intensional intersection composition: (sets via reductions)
(= (|- (($P --> $M) $T1) (($S --> $M) $T2)) ((($P | $S) --> $M) (Truth_Intersection $T1 $T2)))
(= (|- (($P --> $M) $T1) (($S --> $M) $T2)) ((($P & $S) --> $M) (Truth_Union $T1 $T2)))
(= (|- (($P --> $M) $T1) (($S --> $M) $T2)) ((($P ~ $S) --> $M) (Truth_Difference $T1 $T2)))
(= (|- (($M --> $P) $T1) (($M --> $S) $T2)) (($M --> ($P & $S)) (Truth_Intersection $T1 $T2)))
(= (|- (($M --> $P) $T1) (($M --> $S) $T2)) (($M --> ($P | $S)) (Truth_Union $T1 $T2)))
(= (|- (($M --> $P) $T1) (($M --> $S) $T2)) (($M --> ($P - $S)) (Truth_Difference $T1 $T2)))
;;!Extensional and intensional intersection decomposition:
(= (|- (($S --> $M) $T1) ((($S | $P) --> $M) $T2)) (($P --> $M) (Truth_DecomposePNN $T1 $T2)))
(= (|- (($P --> $M) $T1) ((($S | $P) --> $M) $T2)) (($S --> $M) (Truth_DecomposePNN $T1 $T2)))
(= (|- (($S --> $M) $T1) ((($S & $P) --> $M) $T2)) (($P --> $M) (Truth_DecomposeNPP $T1 $T2)))
(= (|- (($P --> $M) $T1) ((($S & $P) --> $M) $T2)) (($S --> $M) (Truth_DecomposeNPP $T1 $T2)))
(= (|- (($S --> $M) $T1) ((($S ~ $P) --> $M) $T2)) (($P --> $M) (Truth_DecomposePNP $T1 $T2)))
(= (|- (($S --> $M) $T1) ((($P ~ $S) --> $M) $T2)) (($P --> $M) (Truth_DecomposeNNN $T1 $T2)))
(= (|- (($M --> $S) $T1) (($M --> ($S & $P)) $T2)) (($M --> $P) (Truth_DecomposePNN $T1 $T2)))
(= (|- (($M --> $P) $T1) (($M --> ($S & $P)) $T2)) (($M --> $S) (Truth_DecomposePNN $T1 $T2)))
(= (|- (($M --> $S) $T1) (($M --> ($S | $P)) $T2)) (($M --> $P) (Truth_DecomposeNPP $T1 $T2)))
(= (|- (($M --> $P) $T1) (($M --> ($S | $P)) $T2)) (($M --> $S) (Truth_DecomposeNPP $T1 $T2)))
(= (|- (($M --> $S) $T1) (($M --> ($S - $P)) $T2)) (($M --> $P) (Truth_DecomposePNP $T1 $T2)))
(= (|- (($M --> $S) $T1) (($M --> ($P - $S)) $T2)) (($M --> $P) (Truth_DecomposeNNN $T1 $T2)))
;; NAL-4
;;!Transformation rules between product and image:
(= (|- ((($A * $B) --> $R) $T)) (($A --> ($R /1 $B)) (Truth_StructuralIntersection $T)))
(= (|- ((($A * $B) --> $R) $T)) (($B --> ($R /2 $A)) (Truth_StructuralIntersection $T)))
(= (|- (($R --> ($A * $B)) $T)) ((($R \1 $B) --> $A) (Truth_StructuralIntersection $T)))
(= (|- (($R --> ($A * $B)) $T)) ((($R \2 $A) --> $B) (Truth_StructuralIntersection $T)))
;;other direction of same rules (as these are bi-directional)
(= (|- (($A --> ($R /1 $B)) $T)) ((($A * $B) --> $R) (Truth_StructuralIntersection $T)))
(= (|- (($B --> ($R /2 $A)) $T)) ((($A * $B) --> $R) (Truth_StructuralIntersection $T)))
(= (|- ((($R \1 $B) --> $A) $T)) (($R --> ($A * $B)) (Truth_StructuralIntersection $T)))
(= (|- ((($R \2 $A) --> $B) $T)) (($R --> ($A * $B)) (Truth_StructuralIntersection $T)))
;;!Comparative relations
(= (|- ((({ $R }) |-> ([ $P ])) $T1) ((({ $S }) |-> ([ $P ])) $T2)) (((({ $R }) * ({ $S })) --> (>>> $P )) (Truth_FrequencyGreater $T1 $T2)))
(= (|- ((($A * $B) --> (>>> $P)) $T1) ((($B * $C) --> (>>> $P)) $T2)) ((($A * $C) --> (>>> $P)) (Truth_Deduction $T1 $T2)))
(= (|- ((({ $R }) |-> ([ $P ])) $T1) ((({ $S }) |-> ([ $P ])) $T2)) (((({ $R }) * ({ $S })) --> (=== $P)) (Truth_FrequencyEqual $T1 $T2)))
(= (|- ((($A * $B) --> (=== $P)) $T1) ((($B * $C) --> (=== $P)) $T2)) ((($A * $C) --> (=== $P)) (Truth_Deduction $T1 $T2)))
(= (|- ((($A * $B) --> (=== $P)) $T)) ((($B * $A) --> (=== $P)) (Truth_StructuralIntersection $T)))
;;!Optional rules for more efficient reasoning about relation components:
(= (|- ((($A * $B) --> $R) $T1) ((($C * $B) --> $R) $T2)) (($C --> $A) (Truth_Abduction $T1 $T2)))
(= (|- ((($A * $B) --> $R) $T1) ((($A * $C) --> $R) $T2)) (($C --> $B) (Truth_Abduction $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($R --> ($C * $B)) $T2)) (($C --> $A) (Truth_Induction $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($R --> ($A * $C)) $T2)) (($C --> $B) (Truth_Induction $T1 $T2)))
(= (|- ((($A * $B) --> $R) $T1) (($C --> $A) $T2)) ((($C * $B) --> $R) (Truth_Deduction $T1 $T2)))
(= (|- ((($A * $B) --> $R) $T1) (($A --> $C) $T2)) ((($C * $B) --> $R) (Truth_Induction $T1 $T2)))
(= (|- ((($A * $B) --> $R) $T1) (($C <-> $A) $T2)) ((($C * $B) --> $R) (Truth_Analogy $T1 $T2)))
(= (|- ((($A * $B) --> $R) $T1) (($C --> $B) $T2)) ((($A * $C) --> $R) (Truth_Deduction $T1 $T2)))
(= (|- ((($A * $B) --> $R) $T1) (($B --> $C) $T2)) ((($A * $C) --> $R) (Truth_Induction $T1 $T2)))
(= (|- ((($A * $B) --> $R) $T1) (($C <-> $B) $T2)) ((($A * $C) --> $R) (Truth_Analogy $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($A --> $C) $T2)) (($R --> ($C * $B)) (Truth_Deduction $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($C --> $A) $T2)) (($R --> ($C * $B)) (Truth_Abduction $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($C <-> $A) $T2)) (($R --> ($C * $B)) (Truth_Analogy $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($B --> $C) $T2)) (($R --> ($A * $C)) (Truth_Deduction $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($C --> $B) $T2)) (($R --> ($A * $C)) (Truth_Abduction $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($C <-> $B) $T2)) (($R --> ($A * $C)) (Truth_Analogy $T1 $T2)))
(= (|- ((($A * $B) --> $R) $T1) ((($C * $B) --> $R) $T2)) (($A <-> $C) (Truth_Comparison $T1 $T2)))
(= (|- ((($A * $B) --> $R) $T1) ((($A * $C) --> $R) $T2)) (($B <-> $C) (Truth_Comparison $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($R --> ($C * $B)) $T2)) (($A <-> $C) (Truth_Comparison $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($R --> ($A * $C)) $T2)) (($B <-> $C) (Truth_Comparison $T1 $T2)))
;;NAL-5
;;!Negation conjunction and disjunction decomposition:
(= (|- ((! $A) $T)) ($A (Truth_Negation $T)))
(= (|- (($A && $B) $T)) ($A (Truth_StructuralDeduction $T)))
(= (|- (($A && $B) $T)) ($B (Truth_StructuralDeduction $T)))
(= (|- (($A && $B) $T)) (($B && $A) (Truth_StructuralIntersection $T)))
(= (|- ($S $T1) (($S && $A) $T2)) ($A (Truth_DecomposePNN $T1 $T2)))
(= (|- ($S $T1) (($S || $A) $T2)) ($A (Truth_DecomposeNPP $T1 $T2)))
(= (|- ($S $T1) (((! $S) && $A) $T2)) ($A (Truth_DecomposeNNN $T1 $T2)))
(= (|- ($S $T1) (((! $S) || $A) $T2)) ($A (Truth_DecomposePPP $T1 $T2)))
;;!Syllogistic rules for Implication:
(= (|- (($A ==> $B) $T1) (($B ==> $C) $T2)) (($A ==> $C) (Truth_Deduction $T1 $T2)))
(= (|- (($A ==> $B) $T1) (($A ==> $C) $T2)) (($C ==> $B) (Truth_Induction $T1 $T2)))
(= (|- (($A ==> $C) $T1) (($B ==> $C) $T2)) (($B ==> $A) (Truth_Abduction $T1 $T2)))
(= (|- (($A ==> $B) $T1) (($B ==> $C) $T2)) (($C ==> $A) (Truth_Exemplification $T1 $T2)))
;;!Conditional composition for conjunction and disjunction:
(= (|- (($A ==> $C) $T1) (($B ==> $C) $T2)) ((($A && $B) ==> $C) (Truth_Union $T1 $T2)))
(= (|- (($A ==> $C) $T1) (($B ==> $C) $T2)) ((($A || $B) ==> $C) (Truth_Intersection $T1 $T2)))
(= (|- (($C ==> $A) $T1) (($C ==> $B) $T2)) (($C ==> ($A && $B)) (Truth_Intersection $T1 $T2)))
(= (|- (($C ==> $A) $T1) (($C ==> $B) $T2)) (($C ==> ($A || $B)) (Truth_Union $T1 $T2)))
;;!Multi-conditional inference:
(= (|- ((($S && $P) ==> $M) $T1) (($S ==> $M) $T2)) ($P (Truth_Abduction $T1 $T2)))
(= (|- ((($C && $M) ==> $P) $T1) (($S ==> $M) $T2)) ((($C && $S) ==> $P) (Truth_Deduction $T1 $T2)))
(= (|- ((($C && $P) ==> $M) $T1) ((($C && $S) ==> $M) $T2)) (($S ==> $P) (Truth_Abduction $T1 $T2)))
(= (|- ((($C && $M) ==> $P) $T1) (($M ==> $S) $T2)) ((($C && $S) ==> $P) (Truth_Induction $T1 $T2)))
;;!Rules for equivalence:
(= (|- (($S <=> $P) $T)) (($P <=> $S) (Truth_StructuralIntersection $T)))
(= (|- (($S ==> $P) $T1) (($P ==> $S) $T2)) (($S <=> $P) (Truth_Intersection $T1 $T2)))
(= (|- (($P ==> $M) $T1) (($S ==> $M) $T2)) (($S <=> $P) (Truth_Comparison $T1 $T2)))
(= (|- (($M ==> $P) $T1) (($M ==> $S) $T2)) (($S <=> $P) (Truth_Comparison $T1 $T2)))
(= (|- (($M ==> $P) $T1) (($S <=> $M) $T2)) (($S ==> $P) (Truth_Analogy $T1 $T2)))
(= (|- (($P ==> $M) $T1) (($S <=> $M) $T2)) (($P ==> $S) (Truth_Analogy $T1 $T2)))
(= (|- (($M <=> $P) $T1) (($S <=> $M) $T2)) (($S <=> $P) (Truth_Resemblance $T1 $T2)))
;;!Higher-order decomposition
(= (|- ($A $T1) (($A ==> $B) $T2)) ($B (Truth_Deduction $T1 $T2)))
(= (|- ($A $T1) ((($A && $B) ==> $C) $T2)) (($B ==> $C) (Truth_Deduction $T1 $T2)))
(= (|- ($B $T1) (($A ==> $B) $T2)) ($A (Truth_Abduction $T1 $T2)))
(= (|- ($A $T1) (($A <=> $B) $T2)) ($B (Truth_Analogy $T1 $T2)))
;;NAL term reductions
;;!Extensional intersection, union, conjunction reductions:
(= ($A & $A) $A)
(= ($A | $A) $A)
(= ($A && $A) $A)
(= ($A || $A) $A)
;;!Extensional set reductions:
(= (({ $A }) | ({ $B })) ({ $A $B }))
(= (({ $A $B }) | ({ $C })) ({ ($A . $B) $C }))
(= (({ $C }) | ({ $A $B }) ) ({ $C ($A . $B) }))
;;!Intensional set reductions:
(= (([ $A ]) & ([ $B ])) ([ $A $B ]) )
(= (([ $A $B ]) & ([ $C ])) ([ ($A . $B) $C ]))
(= (([ $A ]) & ([ $B $C ])) ([ $A ($B . $C) ]))
;;!Reduction for set element copula:
(= ({ ( $A . $B ) }) ({ $A $B }))
(= ([ ( $A . $B ) ]) ([ $A $B ]))
;params
(= (BeliefEventsMax) 10)
(= (GoalEventsMax) 10)
;spaces
!(bind! &belief_events (new-space))
!(bind! &goal_events (new-space))
;states
!(bind! ¤tTime (new-state 1))
!(bind! &evidentialBase (new-state 1))
(= (increment $atom) (change-state! $atom (+ 1 (get-state $atom))))
(= (UpdateReasonerState) ((increment ¤tTime) (increment &evidentialBase)))
(= (GetReasonerState) ((get-state ¤tTime) ((get-state &evidentialBase))))
;priority of events
(= (EventPriorityNow ($T $P) $t) (* $P (/ 1 (+ 1 (- $t $T)))))
;retrieve the best candidate (allows to use tuples / collapse results / spaces as a PQ)
!(bind! &tempbest (new-state Nil))
!(bind! &tempbestscore (new-state 0))
(= (BestCandidate $tuple $evaluateCandidateFunction $t)
(sequential ((do (change-state! &tempbestscore 0))
(do (change-state! &tempbest Nil))
(do (let* (($x (superpose $tuple))
($fx ($evaluateCandidateFunction $x $t)))
(superpose ((If (> $fx (get-state &tempbestscore))
(sequential ((change-state! &tempbest $x)
(change-state! &tempbestscore $fx))))))))
(get-state &tempbest))))
;functions to select highest-priority events in belief and goal PQ
(= (PriorityOf (Event $Sentence ($occT $Ev $Prio)) $t) (EventPriorityNow $Prio $t))
(= (SelectHighestPriorityEvent $collection $t)
(BestCandidate (collapse (get-atoms $collection)) PriorityOf $t))
;a belief event to process, which demands adding it to the PQ and updating its concept
(= (ProcessBeliefEvent $Ev $t)
(sequential ((add-atom &belief_events $Ev)
(UpdateConcept $Ev $t))))
;bound the size of the attentional focus for tasks / events
(= (BoundEvents $collection $Threshold $Increment $TargetAmount $t)
(sequential ((do (let* (($Ev (get-atoms $collection))
((Event $Sentence ($Time $Evidence $EPrio)) $Ev))
(If (< (EventPriorityNow $EPrio $t) $Threshold)
(remove-atom $collection $Ev))))
(let $CurrentAmount (CollapseCardinality (get-atoms $collection))
(If (> $CurrentAmount $TargetAmount)
(BoundEvents $collection (+ $Threshold $Increment) $Increment $TargetAmount $t))))))
;params
(= (AttentionalFocusConceptsMax) 10)
;spaces
!(bind! &concepts (new-space))
!(bind! &attentional_focus (new-space))
;priority of concepts
(= (ConceptPriorityNow ($T $P) $t) (* $P (/ 1 (+ 1 (- $t $T)))))
;whether evidence was just counted once
!(bind! &tempstate (new-state False))
!(bind! &tempset (new-space))
(= (StampDisjoint $x)
(not (sequential ((do (change-state! &tempstate False))
(do (case (get-atoms &tempset)
(($y (remove-atom &tempset $y)))))
(do (let $z (superpose $x)
(case (match &tempset $z $z)
(($w (change-state! &tempstate True))
(%void% (add-atom &tempset $z))))))
(get-state &tempstate)))))
;revise if there is no evidential overlap, else use higher-confident candidate
(= (RevisionAndChoice (Event ($Term1 ($f1 $c1)) (eternal $ev1 $EPrio1)) (Event ($Term2 ($f2 $c2)) (eternal $ev2 $EPrio2)))
(let $ConclusionStamp (TupleConcat $ev1 $ev2)
(If (StampDisjoint $ConclusionStamp)
(Event ($Term1 (Truth_Revision ($f1 $c1) ($f2 $c2))) (eternal $ConclusionStamp (0 0.0)))
(If (> $c1 $c2)
(Event ($Term1 ($f1 $c1)) (eternal $ev1 (0 0.0)))
(Event ($Term2 ($f2 $c2)) (eternal $ev2 (0 0.0)))))))
;;update beliefs in existing concept with the new event or create new concept to enter the new evidence
(= (UpdateConcept $NewEvent $t)
(let* (((Event ($Term $TV) ($Time $Evidence $EPrio)) $NewEvent)
($NewEventEternalized (Eternalize $NewEvent))
($MatchConcept (Concept $Term $Belief $BeliefEvent $CPrio)))
(sequential ((case (match &attentional_focus $MatchConcept $MatchConcept)
(($MatchConcept (sequential ((remove-atom &attentional_focus $MatchConcept)
(let* (($RevisedBelief (RevisionAndChoice $Belief $NewEventEternalized))
($MaxPrio (If (> (EventPriorityNow $EPrio $t) (ConceptPriorityNow $CPrio $t))
$EPrio $CPrio)))
(add-atom &attentional_focus (Concept $Term $RevisedBelief $NewEvent $MaxPrio))))))
(%void% (case (match &concepts $MatchConcept $MatchConcept)
(($MatchConcept (sequential ((remove-atom &concepts $MatchConcept)
(add-atom &attentional_focus $MatchConcept)
(UpdateConcept $NewEvent $t))))
(%void% (add-atom &attentional_focus (Concept $Term $NewEventEternalized $NewEvent $EPrio))))))))))))
;bound the size of attentional focus of concepts
(= (BoundAttention $Threshold $Increment $TargetAmount $t)
(sequential ((do (let* (($C (get-atoms &attentional_focus))
((Concept $Term (Event $Sentence $Metadata) $BeliefEvent $CPrio) $C))
(If (< (ConceptPriorityNow $CPrio $t) $Threshold) (sequential ((remove-atom &attentional_focus $C)
(add-atom &concepts $C))))))
(let $CurrentAmount (CollapseCardinality (get-atoms &attentional_focus))
(If (> $CurrentAmount $TargetAmount)
(BoundAttention (+ $Threshold $Increment) $Increment $TargetAmount $t))))))
;get eternal belief of concept
(: EternalQuestion (-> Expression $t))
(= (EternalQuestion $Term) (case (match (superpose (&attentional_focus &concepts)) (Concept $Term $Belief $BeliefEvent $CPrio) $Belief)
(($Ev $Ev) (%void% (Event (None (0.5 0.0)) (eternal Nil 0.0))))))
;get event belief of concept
(: EventQuestion (-> Expression $t))
(= (EventQuestion $Term) (case (match (superpose (&attentional_focus &concepts)) (Concept $Term $Belief $BeliefEvent $CPrio) $BeliefEvent)
(($Ev $Ev) (%void% (Event (None (0.5 0.0)) (0 Nil 0.0))))))
;;Declarative inference (deriving events and knowledge from observed events)
;Derived belief event priority
(= (ConclusionPriority $EPrio $CPrio $ConcTV) (* (* $EPrio $CPrio) (Truth_Expectation $ConcTV)))
;making declarative inferences on two events (task from PQ and belief from concept)
(= (Conclude (Event $S1 ($time1 $ev1 $prio1)) (Event $S2 ($time2 $ev2 $prio2)) $CPrio $t)
(let $ConclusionStamp (TupleConcat $ev1 $ev2)
(If (StampDisjoint $ConclusionStamp)
(let ($ConcTerm $ConcTV) (superpose ((|- $S1 $S2) (|- $S2 $S1)))
(Event ($ConcTerm $ConcTV)
($time1 $ConclusionStamp
($t (ConclusionPriority (EventPriorityNow $prio1 $t)
(ConceptPriorityNow $CPrio $t)
$ConcTV))))))))
;find a belief for the task to generate conclusions with
(= (ReasonWithTask (Event $S1 ($time1 $ev1 $prio1)) $t)
(let ($Belief $CPrio) (case (get-atoms &attentional_focus)
(((Concept $Term (Event $SE2 ($timeE2 $evE2 $prioE2)) (Event $S2 ($time2 $ev2 $prio2)) $CPrio)
(If (and (not (== $time1 eternal)) (> (abs (- $time1 $time2)) 20))
((Event $SE2 ($timeE2 $evE2 $prioE2)) $Cprio)
((Event $S2 ($time2 $ev2 $prio2)) $CPrio)))))
(case (Conclude (Event $S1 ($time1 $ev1 $prio1)) (TemporallyAlignedBelief $time1 $Belief) $CPrio $t)
(((Event $1 $2) (ProcessBeliefEvent (Event $1 $2) $t))))))
;select the highest priority belief event from the PQ and use it for reasoning
(= (BeliefCycle $t) (do (sequential ((let $Ev (SelectHighestPriorityEvent &belief_events $t)
(sequential ((remove-atom &belief_events $Ev)
(ReasonWithTask $Ev $t))))
(UpdateReasonerState)
(BoundEvents &belief_events 0.0 0.1 (BeliefEventsMax) $t)
(BoundAttention 0.0 0.1 (AttentionalFocusConceptsMax) $t)))))
;;Temporal inference (sequence and implication formation based on FIFO)
;use the event's evidence to induce a time-independent belief which can be used in the future
(= (Eternalize $Ev) (let (Event ($Term $TV) ($Time $Evidence $EPrio)) $Ev
(If (== $Time eternal) $Ev
(Event ($Term (Truth_Eternalize $TV)) (eternal $Evidence (0 0.0))))))
;use evidence of an event at a slightly different moment in time
(= (Projection (Event ($Term ($f $c)) ($Time $Evidence $EPrio)) $TargetTime)
(Event ($Term ($f (* $c (min 1 (/ 1 (abs (- $Time $TargetTime))))))) ($TargetTime $Evidence $EPrio)))
;make the belief occurrence time compatible with the task's
(= (TemporallyAlignedBelief $TaskTime $Belief) (If (== $TaskTime eternal)
(Eternalize $Belief)
(Projection $Belief $TaskTime)))
;FIFO max. size bound
!(bind! &FIFO (new-state Nil))
(= (ListFirstK $C Nil) Nil)
(= (ListFirstK $C (Cons $LH $LT))
(If (> $C 0)
(Cons $LH (ListFirstK (- $C 1) $LT))
Nil))
;Add event to FIFO
(= (EventToFIFO $Ev)
(let $newlist (ListFirstK 3 (Cons $Ev (get-state &FIFO)))
(change-state! &FIFO $newlist)))
;Form a sequence of two events
(= (TemporalSequence $Ev1 (Event ($Term2 $Truth2) ($Time2 $Evidence2 $EPrio2)))
(let (Event ($Term1 $Truth1) ($Time1 $Evidence1 $EPrio1)) (Projection $Ev1 $Time2)
(Event (($Term1 &/ $Term2) (Truth_Intersection $Truth1 $Truth2)) ($Time2 (TupleConcat $Evidence1 $Evidence2) (0 0.0)))))
;Form a temporal implication between two events
(= (TemporalImplication $Ev1 (Event ($Term2 $Truth2) ($Time2 $Evidence2 $EPrio2)))
(let (Event ($Term1 $Truth1) ($Time1 $Evidence1 $EPrio1)) (Projection $Ev1 $Time2)
(Event (($Term1 =/> $Term2) (Truth_Induction $Truth1 $Truth2)) ($Time2 (TupleConcat $Evidence1 $Evidence2) (0 0.0)))))
;Whether an event's term is an operation
(= (IsOp (Event ($Term $Truth) $Metadata))
(case $Term (((^ $Opname) True)
($Otherwise False))))
;Find implications in the event FIFO:
;procedural implications
(= (TemporalImplicationInduction (Cons $Cons (Cons $Op (Cons $Prec $Tail))))
(If (and (IsOp $Op) (and (not (IsOp $Cons)) (not (IsOp $Prec))))
(let $PrecOp (TemporalSequence $Prec $Op)
(TemporalImplication $PrecOp $Cons))))
;and temporal without operation
(= (TemporalImplicationInduction (Cons $Cons (Cons $Prec $Tail)))
(If (and (not (IsOp $Prec)) (not (IsOp $Cons)))
(TemporalImplication $Prec $Cons)))
;Add negative evidence for implications which predicted the input unsuccessfully
(= (NegConfirmation $PrecTerm $ObservedCons $t)
(let (Event (($PrecTerm =/> $PredictedCons) $ImpTV) $ImpMetadata) (EternalQuestion ($PrecTerm =/> $PredictedCons))
(If (not (== $ObservedCons $PredictedCons))
(UpdateConcept (Event (($PrecTerm =/> $PredictedCons) (0.0 0.1)) ($t () (0 0.0))) $t))))
;Check if the implication's preconditions are met to anticipate the by the implication predicted outcome
(= (Anticipate (Cons $Pos Nil) $t))
(= (Anticipate (Cons $Pos (Cons $Pre Nil)) $t)
(let* (((Event ($PreTerm $PreTV) $PreMetadata) $Pre)
((Event ($PosTerm $PosTV) $PosMetadata) $Pos))
(If (not (IsOp $Pre))
(NegConfirmation $PreTerm $PosTerm $t))))
(= (Anticipate (Cons $Pos (Cons $Op (Cons $Pre $Trail))) $t)
(let* (((Event ($PreTerm $PreTV) $PreMetadata) $Pre)
((Event ($OpTerm $OpTV) $OpMetadata) $Op)
((Event ($PosTerm $PosTV) $PosMetadata) $Pos)
($Sequence ($Pre &/ Pos)))
(If (and (IsOp $Op) (not (IsOp $Pre)))
(NegConfirmation ($PreTerm &/ $OpTerm) $PosTerm $t))))
;;Input procedure
(= (AddBeliefEvent $Sentence)
(let* ((($t $evidentialBase) (GetReasonerState))
($InputEvent (Event $Sentence ($t $evidentialBase ($t 1.0)))))
(do (sequential ((EventToFIFO $InputEvent)
(let $InducedHypothesis (TemporalImplicationInduction (get-state &FIFO))
(UpdateConcept $InducedHypothesis $t))
(ProcessBeliefEvent $InputEvent $t)
(Anticipate (get-state &FIFO) $t)
(BeliefCycle $t))))))
;;Procedural inference (decision making with operation execution and subgoaling)
;Derived goal event priority
(= (SubgoalPriority $EPrio $ConcTV) (* $EPrio (Truth_Expectation $ConcTV)))
;Expectation of an operation is the truth expectation of its desire value
(= (OpExpectation (Decision ($Opname $DVOp) $Subgoal) $t) (Truth_Expectation $DVOp))
;Inject executed operation as an event and return its name
(= (Execute $Opname) (superpose ((AddBeliefEvent ($Opname (1.0 0.9))) $Opname)))
;Add subgoals to the PQ
(= (DeriveSubgoals $Options)
(do (let (Decision $Op $Subgoal) (superpose $Options)
(add-atom &goal_events $Subgoal))))
;execute the operation which most likely gets the goal achieved in current contexts, and if contexts are not yet fulfilled, derive them as subgoals
(= (BestDecision $t (Event ($Term $DV) ($GoalTime $GoalEvBase $GoalPrio)) $FIFO)
(let $Options (collapse (let* (((Event ((($Prec &/ (^ $Op)) =/> $Term) $ImpTV) ($ImpTime $ImpEvBase $ImpPrio))
(EternalQuestion (($Prec &/ (^ $Op)) =/> $Term)))
($DVPrecOp (Truth_Deduction $DV $ImpTV))
((Event ($PrecTerm $PrecTV) $PrecMetadata)
(Projection (EventQuestion $Prec) $t))
($DVOp (Truth_Deduction $PrecTV $DVPrecOp))
($DVPrec (Truth_StructuralDeduction $DVPrecOp))
($SubgoalStamp (TupleConcat $GoalEvBase $ImpEvBase)))
(If (StampDisjoint $SubgoalStamp)
(Decision ((^ $Op) $DVOp) (Event ($Prec (Truth_StructuralDeduction $DVPrecOp))
($t $SubgoalStamp ($t (SubgoalPriority (EventPriorityNow $GoalPrio $t) $DVPrec))))))))
(let (Decision ($Opname $DVOp) $Subgoal) (BestCandidate $Options OpExpectation $t)
(If (> (Truth_Expectation $DVOp) 0.5)
(Execute $Opname)
(DeriveSubgoals $Options)))))
;;select the highest priority goal event from the PQ and use it for decision making
(= (GoalCycle $t) (sequential ((let $Ev (SelectHighestPriorityEvent &goal_events $t)
(sequential ((do (remove-atom &goal_events $Ev))
(BestDecision $t $Ev (get-state &FIFO)))))
(do (UpdateReasonerState))
(do (BoundEvents &goal_events 0.0 0.1 (GoalEventsMax) $t)))))
;;Input procedure
(= (AddGoalEvent $Sentence)
(let* ((($t $evidentialBase) (GetReasonerState))
($InputEvent (Event $Sentence ($t $evidentialBase ($t 1.0)))))
(sequential ((do (add-atom &goal_events $InputEvent))
(GoalCycle $t)))))