-
Notifications
You must be signed in to change notification settings - Fork 6
/
makeresponseimage.cc
636 lines (548 loc) · 22.8 KB
/
makeresponseimage.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
//# makeresponseimage.cc: Generate images of the station response for a given
//# MeasurementSet.
//#
//# Copyright (C) 2013
//# ASTRON (Netherlands Institute for Radio Astronomy)
//# P.O.Box 2, 7990 AA Dwingeloo, The Netherlands
//#
//# This file is part of the LOFAR software suite.
//# The LOFAR software suite is free software: you can redistribute it and/or
//# modify it under the terms of the GNU General Public License as published
//# by the Free Software Foundation, either version 3 of the License, or
//# (at your option) any later version.
//#
//# The LOFAR software suite is distributed in the hope that it will be useful,
//# but WITHOUT ANY WARRANTY; without even the implied warranty of
//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//# GNU General Public License for more details.
//#
//# You should have received a copy of the GNU General Public License along
//# with the LOFAR software suite. If not, see <http://www.gnu.org/licenses/>.
//#
//# $Id$
#include <lofar_config.h>
#include <StationResponse/Package__Version.h>
#include <StationResponse/LofarMetaDataUtil.h>
#include <Common/InputParSet.h>
#include <Common/lofar_sstream.h>
#include <Common/LofarLogger.h>
#include <Common/SystemUtil.h>
#include <Common/Version.h>
#include <casacore/coordinates/Coordinates/CoordinateSystem.h>
#include <casacore/coordinates/Coordinates/SpectralCoordinate.h>
#include <casacore/coordinates/Coordinates/StokesCoordinate.h>
#include <casacore/coordinates/Coordinates/DirectionCoordinate.h>
#include <casacore/images/Images/PagedImage.h>
#include <casacore/measures/Measures/MCDirection.h>
#include <casacore/measures/Measures/MCPosition.h>
#include <casacore/measures/Measures/MDirection.h>
#include <casacore/measures/Measures/MeasConvert.h>
#include <casacore/measures/Measures/MeasTable.h>
#include <casacore/measures/Measures/MEpoch.h>
#include <casacore/measures/Measures/MPosition.h>
#include <casacore/ms/MeasurementSets/MeasurementSet.h>
#include <casacore/ms/MeasurementSets/MSDataDescription.h>
#include <casacore/ms/MeasurementSets/MSDataDescColumns.h>
#include <casacore/ms/MeasurementSets/MSField.h>
#include <casacore/ms/MeasurementSets/MSFieldColumns.h>
#include <casacore/ms/MeasurementSets/MSObservation.h>
#include <casacore/ms/MeasurementSets/MSObsColumns.h>
#include <casacore/ms/MeasurementSets/MSSpectralWindow.h>
#include <casacore/ms/MeasurementSets/MSSpWindowColumns.h>
#include <casacore/tables/Tables/ExprNode.h>
// There is no wrapped include file lofar_iterator.h.
#include <iterator>
using namespace casacore;
using namespace LOFAR;
using namespace LOFAR::StationResponse;
using LOFAR::operator<<;
namespace
{
/*!
* \brief Map of ITRF directions required to compute an image of the
* station beam.
*
* The station beam library uses the ITRF coordinate system to express
* station positions and source directions. Since the Earth moves with
* respect to the sky, the ITRF coordinates of a source vary with time.
* This structure stores the ITRF coordinates for the station and tile beam
* former reference directions, as well as for a grid of points on the sky,
* along with the time for which these ITRF coordinates are valid.
*/
struct ITRFDirectionMap
{
/*!
* \brief The time for which this ITRF direction map is valid (MJD(UTC)
* in seconds).
*/
double_t time0;
/*!
* \brief Station beam former reference direction expressed in ITRF
* coordinates.
*/
vector3r_t station0;
/*!
* \brief Tile beam former reference direction expressed in ITRF
* coordinates.
*/
vector3r_t tile0;
/*!
* \brief ITRF coordinates for a grid of points on the sky.
*/
Matrix<vector3r_t> directions;
};
/*!
* \brief Create an ITRFDirectionMap.
*
* \param coordinates Sky coordinate system definition.
* \param shape Number of points along the RA and DEC axis.
* \param epoch Time for which to compute the ITRF coordinates.
* \param position0 Station beam former reference position (phase
* reference).
* \param station0 Station beam former reference direction (pointing).
* \param tile0 Tile beam former reference direction (pointing).
*/
ITRFDirectionMap makeDirectionMap(const DirectionCoordinate &coordinates,
const IPosition &shape, const MEpoch &epoch, const MPosition &position0,
const MDirection &station0, const MDirection &tile0);
/*!
* \brief Create a DirectionCoordinate instance that defines an image
* coordinate system on the sky (J2000).
*
* \param reference Direction that corresponds to the origin of the
* coordinate system.
* \param size Number of points along each axis (RA, DEC). The index of the
* origin of the coordinate system is (size / 2, size / 2).
* \param delta Angular step size in radians (assumed to be the same for
* both axes).
*/
DirectionCoordinate makeCoordinates(const MDirection &reference,
unsigned int size, double delta);
/*!
* \brief Convert an ITRF position given as a StationResponse::vector3r_t
* instance to a casacore::MPosition.
*/
MPosition toMPositionITRF(const vector3r_t &position);
/*!
* \brief Convert a casacore::MPosition instance to a
* StationResponse::vector3r_t instance.
*/
vector3r_t fromMPosition(const MPosition &position);
/*!
* \brief Convert a casacore::MDirection instance to a
* StationResponse::vector3r_t instance.
*/
vector3r_t fromMDirection(const MDirection &direction);
/*!
* \brief Check if the specified column exists as a column of the specified
* table.
*
* \param table The Table instance to check.
* \param column The name of the column.
*/
bool hasColumn(const Table &table, const string &column);
/*!
* \brief Check if the specified sub-table exists as a sub-table of the
* specified table.
*
* \param table The Table instance to check.
* \param name The name of the sub-table.
*/
bool hasSubTable(const Table &table, const string &name);
/*!
* \brief Provide access to a sub-table by name.
*
* \param table The Table instance to which the sub-table is associated.
* \param name The name of the sub-table.
*/
Table getSubTable(const Table &table, const string &name);
/*!
* \brief Attempt to read the position of the observatory. If the
* observatory position is unknown, the specified default position is
* returned.
*
* \param ms MeasurementSet to read the observatory position from.
* \param idObservation Identifier that determines of which observation the
* observatory position should be read.
* \param defaultPosition The position that will be returned if the
* observatory position is unknown.
*/
MPosition readObservatoryPosition(const MeasurementSet &ms,
unsigned int idObservation, const MPosition &defaultPosition);
/*!
* \brief Read the list of unique timestamps.
*
* \param ms MeasurementSet to read the list of unique timestamps from.
*/
Vector<Double> readUniqueTimes(const MeasurementSet &ms);
/*!
* \brief Read the reference frequency of the subband associated to the
* specified data description identifier.
*
* \param ms MeasurementSet to read the reference frequency from.
* \param idDataDescription Identifier that determines of which subband the
* reference frequency should be read.
*/
double readFreqReference(const MeasurementSet &ms,
unsigned int idDataDescription);
/*!
* \brief Read the phase reference direction.
*
* \param ms MeasurementSet to read the phase reference direction from.
* \param idField Identifier of the field of which the phase reference
* direction should be read.
*/
MDirection readPhaseReference(const MeasurementSet &ms,
unsigned int idField);
/*!
* \brief Read the station beam former reference direction.
*
* \param ms MeasurementSet to read the station beam former reference
* direction from.
* \param idField Identifier of the field of which the station beam former
* reference direction should be read.
*/
MDirection readDelayReference(const MeasurementSet &ms,
unsigned int idField);
/*!
* \brief Read the station beam former reference direction.
*
* \param ms MeasurementSet to read the tile beam former reference
* direction from.
* \param idField Identifier of the field of which the tile beam former
* reference direction should be read.
*/
MDirection readTileReference(const MeasurementSet &ms,
unsigned int idField);
/*!
* \brief Store the specified cube of pixel data as a CASA image.
*
* \param data Pixel data. The third dimension is assumed to be of length
* 4, referring to the correlation products XX, XY, YX, YY (in this order).
* \param coordinates Sky coordinate system definition.
* \param frequency Frequency for which the pixel data is valid (Hz).
* \param name File name of the output image.
*/
template <class T>
void store(const Cube<T> &data, const DirectionCoordinate &coordinates,
double frequency, const string &name);
/*!
* \brief Convert a string to a CASA Quantity (value with unit).
*/
Quantity readQuantity(const String &in);
/*!
* \brief Remove all elements from the range [first, last) that fall
* outside the interval [min, max].
*
* This function returns an iterator new_last such that the range [first,
* new_last) contains no elements that fall outside the interval [min,
* max]. The iterators in the range [new_last, last) are all still
* dereferenceable, but the elements that they point to are unspecified.
* The order of the elements that are not removed is unchanged.
*/
template <typename T>
T filter(T first, T last, int min, int max);
} //# unnamed namespace
int main(int argc, char *argv[])
{
TEST_SHOW_VERSION(argc, argv, StationResponse);
INIT_LOGGER(basename(string(argv[0])));
Version::show<StationResponseVersion>(cout);
// Parse inputs.
LOFAR::InputParSet inputs;
inputs.create("ms", "", "Name of input MeasurementSet", "string");
inputs.create("stations", "0", "IDs of stations to process", "int vector");
inputs.create("cellsize", "60arcsec", "Angular pixel size",
"quantity string");
inputs.create("size", "256", "Number of pixels along each axis", "int");
inputs.create("offset", "0s", "Time offset from the start of the MS",
"quantity string");
inputs.create("frames", "0", "Number of images that will be generated for"
" each station (equally spaced over the duration of the MS)", "int");
inputs.create("abs", "false", "If set to true, store the absolute value of"
" the beam response instead of the complex value (intended for use with"
" older versions of casaviewer)", "bool");
inputs.readArguments(argc, argv);
vector<int> stationIDs(inputs.getIntVector("stations"));
Quantity cellsize = readQuantity(inputs.getString("cellsize"));
unsigned int size = max(inputs.getInt("size"), 1);
Quantity offset = readQuantity(inputs.getString("offset"));
unsigned int nFrames = max(inputs.getInt("frames"), 1);
Bool abs = inputs.getBool("abs");
// Open MS.
MeasurementSet ms(inputs.getString("ms"));
unsigned int idObservation = 0, idField = 0, idDataDescription = 0;
// Read station meta-data.
vector<Station::Ptr> stations;
readStations(ms, std::back_inserter(stations));
// Remove illegal station indices.
stationIDs.erase(filter(stationIDs.begin(), stationIDs.end(), 0,
static_cast<int>(stations.size()) - 1), stationIDs.end());
// Read unique timestamps
Table selection =
ms(ms.col("OBSERVATION_ID") == static_cast<Int>(idObservation)
&& ms.col("FIELD_ID") == static_cast<Int>(idField)
&& ms.col("DATA_DESC_ID") == static_cast<Int>(idDataDescription));
Vector<Double> time = readUniqueTimes(selection);
// Read reference frequency.
double refFrequency = readFreqReference(ms, idDataDescription);
// Use the position of the first selected station as the array reference
// position if the observatory position cannot be found.
MPosition refPosition = readObservatoryPosition(ms, idField,
toMPositionITRF(stations.front()->position()));
// Read phase reference direction.
MDirection refPhase = readPhaseReference(ms, idField);
// Read delay reference direction.
MDirection refDelay = readDelayReference(ms, idField);
// Read tile reference direction.
MDirection refTile = readTileReference(ms, idField);
// Create image coordinate system.
IPosition shape(2, size, size);
DirectionCoordinate coordinates = makeCoordinates(refPhase, size,
cellsize.getValue("rad"));
// Compute station response images.
Cube<Complex> response(size, size, 4);
MEpoch refEpoch;
Quantity refTime(time(0), "s");
refTime = refTime + offset;
Quantity deltaTime((time(time.size() - 1) - time(0) - offset.getValue("s"))
/ (nFrames - 1), "s");
for(size_t j = 0; j < nFrames; ++j)
{
cout << "[ Frame: " << (j + 1) << "/" << nFrames << " Offset: +"
<< refTime.getValue() - time(0) << " s ]" << endl;
// Update reference epoch.
refEpoch.set(refTime);
cout << "Creating ITRF direction map... " << flush;
ITRFDirectionMap directionMap = makeDirectionMap(coordinates, shape,
refEpoch, refPosition, refDelay, refTile);
cout << "done." << endl;
cout << "Computing response images... " << flush;
for(vector<int>::const_iterator it = stationIDs.begin(),
end = stationIDs.end(); it != end; ++it)
{
Station::ConstPtr station = stations[*it];
cout << *it << ":" << station->name() << " " << flush;
for(size_t y = 0; y < size; ++y)
{
for(size_t x = 0; x < size; ++x)
{
matrix22c_t E = station->response(directionMap.time0,
refFrequency, directionMap.directions(x, y),
refFrequency, directionMap.station0,
directionMap.tile0);
response(x, y, 0) = E[0][0];
response(x, y, 1) = E[0][1];
response(x, y, 2) = E[1][0];
response(x, y, 3) = E[1][1];
}
}
std::ostringstream oss;
oss << "response-" << station->name() << "-frame-" << (j + 1)
<< ".img";
if(abs)
{
store(Cube<Float>(amplitude(response)), coordinates,
refFrequency, oss.str());
}
else
{
store(response, coordinates, refFrequency, oss.str());
}
}
cout << endl;
refTime = refTime + deltaTime;
}
return 0;
}
namespace
{
ITRFDirectionMap makeDirectionMap(const DirectionCoordinate &coordinates,
const IPosition &shape, const MEpoch &epoch, const MPosition &position0,
const MDirection &station0, const MDirection &tile0)
{
ITRFDirectionMap map;
// Convert from MEpoch to a time in MJD(UTC) in seconds.
MEpoch mEpochUTC = MEpoch::Convert(epoch, MEpoch::Ref(MEpoch::UTC))();
MVEpoch mvEpochUTC = mEpochUTC.getValue();
Quantity qEpochUTC = mvEpochUTC.getTime();
map.time0 = qEpochUTC.getValue("s");
// Create conversion engine J2000 => ITRF at the specified epoch.
MDirection::Convert convertor = MDirection::Convert(MDirection::J2000,
MDirection::Ref(MDirection::ITRF, MeasFrame(epoch, position0)));
// Compute station and tile beam former reference directions in ITRF at
// the specified epoch.
map.station0 = fromMDirection(convertor(station0));
map.tile0 = fromMDirection(convertor(tile0));
// Pre-allocate space for the grid of ITRF directions.
map.directions.resize(shape);
// Compute ITRF directions.
MDirection world;
Vector<Double> pixel = coordinates.referencePixel();
for(pixel(1) = 0.0; pixel(1) < shape(1); ++pixel(1))
{
for(pixel(0) = 0.0; pixel(0) < shape(0); ++pixel(0))
{
// CoordinateSystem::toWorld(): RA range [-pi,pi], DEC range
// [-pi/2,pi/2].
if(coordinates.toWorld(world, pixel))
{
map.directions(pixel(0), pixel(1)) =
fromMDirection(convertor(world));
}
}
}
return map;
}
DirectionCoordinate makeCoordinates(const MDirection &reference,
unsigned int size, double delta)
{
MDirection referenceJ2000 = MDirection::Convert(reference,
MDirection::J2000)();
Quantum<Vector<Double> > referenceAngles = referenceJ2000.getAngle();
double ra = referenceAngles.getBaseValue()(0);
double dec = referenceAngles.getBaseValue()(1);
Matrix<Double> xform(2,2);
xform = 0.0; xform.diagonal() = 1.0;
return DirectionCoordinate(MDirection::J2000,
Projection(Projection::SIN), ra, dec, -delta, delta, xform,
size / 2, size / 2);
}
MPosition toMPositionITRF(const vector3r_t &position)
{
MVPosition mvITRF(position[0], position[1], position[2]);
return MPosition(mvITRF, MPosition::ITRF);
}
vector3r_t fromMPosition(const MPosition &position)
{
MVPosition mvPosition = position.getValue();
vector3r_t result = {{mvPosition(0), mvPosition(1), mvPosition(2)}};
return result;
}
vector3r_t fromMDirection(const MDirection &direction)
{
MVDirection mvDirection = direction.getValue();
vector3r_t result = {{mvDirection(0), mvDirection(1), mvDirection(2)}};
return result;
}
bool hasColumn(const Table &table, const string &column)
{
return table.tableDesc().isColumn(column);
}
bool hasSubTable(const Table &table, const string &name)
{
return table.keywordSet().isDefined(name);
}
Table getSubTable(const Table &table, const string &name)
{
return table.keywordSet().asTable(name);
}
MPosition readObservatoryPosition(const MeasurementSet &ms,
unsigned int idObservation, const MPosition &defaultPosition)
{
// Get the instrument position in ITRF coordinates, or use the centroid
// of the station positions if the instrument position is unknown.
ROMSObservationColumns observation(ms.observation());
ASSERT(observation.nrow() > idObservation);
ASSERT(!observation.flagRow()(idObservation));
// Read observatory name and try to look-up its position.
const string observatory = observation.telescopeName()(idObservation);
// Look-up observatory position, default to specified default position.
MPosition position(defaultPosition);
MeasTable::Observatory(position, observatory);
return position;
}
Vector<Double> readUniqueTimes(const MeasurementSet &ms)
{
Table tab_sorted = ms.sort("TIME", Sort::Ascending, Sort::HeapSort
| Sort::NoDuplicates);
ROScalarColumn<Double> c_time(tab_sorted, "TIME");
return c_time.getColumn();
}
double readFreqReference(const MeasurementSet &ms,
unsigned int idDataDescription)
{
ROMSDataDescColumns desc(ms.dataDescription());
ASSERT(desc.nrow() > idDataDescription);
ASSERT(!desc.flagRow()(idDataDescription));
uInt idWindow = desc.spectralWindowId()(idDataDescription);
ROMSSpWindowColumns window(ms.spectralWindow());
ASSERT(window.nrow() > idWindow);
ASSERT(!window.flagRow()(idWindow));
return window.refFrequency()(idWindow);
}
MDirection readPhaseReference(const MeasurementSet &ms,
unsigned int idField)
{
ROMSFieldColumns field(ms.field());
ASSERT(field.nrow() > idField);
ASSERT(!field.flagRow()(idField));
return field.phaseDirMeas(idField);
}
MDirection readDelayReference(const MeasurementSet &ms,
unsigned int idField)
{
ROMSFieldColumns field(ms.field());
ASSERT(field.nrow() > idField);
ASSERT(!field.flagRow()(idField));
return field.delayDirMeas(idField);
}
MDirection readTileReference(const MeasurementSet &ms, unsigned int idField)
{
// The MeasurementSet class does not support LOFAR specific columns, so
// we use ROArrayMeasColumn to read the tile beam reference direction.
Table tab_field = getSubTable(ms, "FIELD");
static const String columnName = "LOFAR_TILE_BEAM_DIR";
if(hasColumn(tab_field, columnName))
{
ROArrayMeasColumn<MDirection> c_direction(tab_field, columnName);
if(c_direction.isDefined(idField))
{
return c_direction(idField)(IPosition(1, 0));
}
}
// By default, the tile beam reference direction is assumed to be equal
// to the station beam reference direction (for backward compatibility,
// and for non-HBA measurements).
return readDelayReference(ms, idField);
}
template <class T>
void store(const Cube<T> &data, const DirectionCoordinate &coordinates,
double frequency, const string &name)
{
ASSERT(data.shape()(2) == 4);
Vector<Int> stokes(4);
stokes(0) = Stokes::XX;
stokes(1) = Stokes::XY;
stokes(2) = Stokes::YX;
stokes(3) = Stokes::YY;
CoordinateSystem csys;
csys.addCoordinate(coordinates);
csys.addCoordinate(StokesCoordinate(stokes));
csys.addCoordinate(SpectralCoordinate(MFrequency::TOPO, frequency, 0.0,
0.0));
PagedImage<T> im(TiledShape(IPosition(4, data.shape()(0),
data.shape()(1), 4, 1)), csys, name);
im.putSlice(data, IPosition(4, 0, 0, 0, 0));
}
Quantity readQuantity(const String &in)
{
Quantity result;
bool status = Quantity::read(result, in);
ASSERT(status);
return result;
}
template <typename T>
T filter(T first, T last, int min, int max)
{
T new_last = first;
for(; first != last; ++first)
{
if(*first >= min && *first <= max)
{
*new_last++ = *first;
}
}
return new_last;
}
} // unnamed namespace.