From fe8eba4b280b0589e2a93b7bfdb94222253c7c27 Mon Sep 17 00:00:00 2001 From: Quarto GHA Workflow Runner Date: Wed, 11 Sep 2024 08:36:09 +0000 Subject: [PATCH] Built site for gh-pages --- .nojekyll | 2 +- gif/tmp-85.gif | Bin 0 -> 6527 bytes plot_trait_evolution.html | 9 +++++++-- search.json | 4 ++-- sitemap.xml | 18 +++++++++--------- 5 files changed, 19 insertions(+), 14 deletions(-) create mode 100644 gif/tmp-85.gif diff --git a/.nojekyll b/.nojekyll index c795b94..3605d05 100644 --- a/.nojekyll +++ b/.nojekyll @@ -1 +1 @@ -f0d1bacf \ No newline at end of file +b2911a50 \ No newline at end of file diff --git a/gif/tmp-85.gif b/gif/tmp-85.gif new file mode 100644 index 0000000000000000000000000000000000000000..c32ce322cb6ef59c2583ad7bb2a57489817d04cc GIT binary patch literal 6527 zcmcJQ`9Bkm*&#=qN1W=Vq%h#lE;r9 zKXKy3$&)AHa5w^iP*6}%R#sL~QBhMgpOA8YmPBjYex~YHDd|X=`ii=;-L` z>gws~VK5kdeSHH1gVU!^pE+~J(9qDx$jI2(*u=!d)YKG<#hRI!nVXwiSXfwET3T6I z;cz%>Yim3nZ)0O)Yiny~XLt7O*>mU45eNi(dwT~52S-OoCnqOoXJ;1|7gtwTB9VCh z{CPJwH+Oe;4-bzE7cO{udU|+9?1=jZS59}o}_7#J876cijB zOrcONUc49*5)v93dg;=ou&}VpmoHzrawR-GJR&0E>eZ`}k&#hRQPI)SF)=aMu3fu+ z{d#O{Y+PJie0+RDLIRaaO-xKoN=iyjPEJWlNli_q(P(LDY3b?d85tRLI{n6t8=0Az zH*em&b?a7ER#tX)c1})CZfloS6&010m5&}hs;a80uCA`Bsj024ef;=wU0q#$ zeSJei1Cz;YY;0_5YGSci&CSg%EiF%;JZWuhZEI_5Z*TAD=y>|{>9c3goC;3 z&d#o`uI}#co}QlG-rl~xzW)CHfq{X+!NH-Sq2b}-k&%(n(b2K7vGMWomoHzwdi9FU zW=~8^OioTtO-;Ri{d#(OdS+&3c6Rp7n>TOYzJ2%Z-TU|NKYaKwH#avwKfkcBu(-Im zw6wImy!`Rw$CZ_p)z#HcpFXXvt*x)GfByXW%a<=-zkdDp?c4Y7-#0cke*E~s;czxL zH@CL7wzs!`{`|SKv$MOq`|H=Qy}iBt{r%s+fB*UO=iuPr@87?Nhll_E{p0$7mh3(V z#P?r@>_2|%5ORQ@9XTM#hawn24hbO}qSUo@{;N2b+W$fPHyAGHAy+4_6pmTioeULG z@fc!0>`jBo!$MIJSE2(kKv|@(K{%gkz#9B<@h~J z_?HjEtVgd(Op^Je@y%5eWw<<*3nR_dQ;!H``1|;ln(101D|l|CrFOP~)JvDPdGh!z zD{!jj!swH__pM<`0%hy?^&*%fYr%%4WZwvoAKmN4!$3j;! zzs%WZZJQs5@>IQEK5O4z3#zrdHzV-gum;irO)*EHv0-^DrGBer7M*@YvNO`WxMhsb_~7K<<=Bf(z;W2 z+c%V?UToRu97_L87fmi)OOq?{%^kj89t$9+K;p4BTGK>5J5>3ZTwASfHkL1`z-fz| z4v@^{RWA2s48gP8_Hc?N*$%@g*}hGD=<(QXY4!KdxA+pKU}p14tIyN;)7d$UAr)?{ zCN#C+aUm}vLN{Yx8>Fy(Bl7EhV7h43Sfk}hnuOeHGM%0D>B?}kI3nN9MRQd3DC9h^ za>E!7Mr-(qvD0MbCt65)Jw^{oMeQvO-h&-k{vvG zqA_*}0CL&7Uc-mP6j8r6?)4hFsKHV*eQaq!nz10wIvUO?brUlE7l&5{w#|sAoaxFX-&^3%N0S4?{xVq+>yXXbA_HI^Rn-lrk}1GhKG` zZyWwGn4E5t#j<6MNI5*VUzbjK8Bi_9p0qBJvx!HKhKv(j<&}wx*^laq*tsWl`+h#- zOC`9B`L#_uX^j>ZpzaOA_iNPFk{gb1K|8=r#lsAy{j8TxCp&3QBf?(}f3tg$K~7eA z5w)sKqy$Aw_-zM6h3gLuO6bv#FpmypDdwk3IBK3Iyrz?KtQH*??(5}W8`OW4SSC(X8mN=C9_s?@0EeZs2v!2R z!_c<^>Zz}`hE)Q@^2at8Y?DWew}*+mVu`as%JT)k{`k^O@q4)9-6Kgh-zX+m(BFsu z3GdyRRdBS^f?g|9MFRxgFKU(hp0&-jda?XKhFInCXe8^d2!zR`p{hbHU^SC34mjYg zB8WISPz=HLk^P3+5Hc9eHA$DH`$Jz{QRcIJ&lD0MG}f8^NOVxZ>ZPgp$%R2QC3oUs z5VaJtpt94%jpJ)+XPmrs4jC|jAd>_YSG*MvLjYYf63Pr>1H@S-gvH678y|PZ4D#eH zwC*-OJk~vUw1_jwna?v9UB!!r17yVx2sF*dOGnhl=2I9~dGwm=v{^);$fs=c)6bJc zFZF=Y@iQ6*b$r4iH7PM_t$g+#k53On2YygRADvtDKDL@DJRhH8X=C^5XgM*tdV>VD zX;+V^{f$LYqf<3OYBcaja+?1HL;P%r7x(qN#3wv54r9xKok}N;Pgy=Xb(j;A9frs? zC^9iXein%#9#@vt?)be7|V-rR-*U!ben2w%lId{PI zSw`xa4hp$L)}T0Vv9`UO>z{yTLC1ov!5;7zk9Bl-->TlFlokX-glPIoSfed`xe~}) z`f`Sx+vFG5VpzM)^!a+>C}{GITE}z!=|=<+`Sr;!mIT8Y3qE)2H*hkJeV3 zODsaiDec`iY1s(T5~l}%7JL}^nuuaTbBF2UC4Sw%;sRf1o;zC?WL0me2;aO9l8EKr@bliA1&9=5r#S>IEASp+peRn6Ew_N$H zh7@q<0+jlHqp=>`fxfl1lN>9k^>e!wllU>X)cic;L&v5YH^rl~96n<;MmI|AT|LZT z)IjylV5@`Fn-ZT;96Unb_L{>0!rFny-MIKoqkV##q3_I0GlD&ddw|f{Fyst=osa!N zBZx=3O48a|kWXX_$S7`Wp@{EBI~L?ecj)Ppn21lWz|)xEr;J;#JN zpt`^uBE%fi5}1oFu{GQbZ1%{lVSb@$ptyOBv$-HJOOV-EwDUhm)9aJno_Zj8 z36?~Pk6|YGuG~XBWzTh6O21lVQ=+C`Gia2e1d@A()$SXbO<6AXzg`z1=nC&47LmC4 zAD4n}?5Ku(ZfS0@G36`DS8tu;0IAp>K@41>`1{nTTT{pM+nvVuCu~%d4@~%KL3WzQ zFRaZ7|8{yQyq|H&+z^pdm^$d9)|?AGf{O;L6K06i0WKf{j#b>C0ue;j>uR-= z1<5nZT{(A3YqKg#gD>o|VPyirKMr18R0CW1n68Ay^;HKRc7bA%x^CKm-NzMo&pCjA z!m3w+A}%O^?ASvAc*t9qz_0qAZy`OrzqfJtmn-_TxI<4F?%LK`4Tq{w#-M z*xX1H5JQXfW=%zyz*{kSZGY>WW-f0s$;FEe5DVjx4+DEG@+9~`Lt&@l`hs9dO4~yA zv1Xu9UFa_4T2m@8oa=bamJ_-4QiLc~mC7y824JaR@F3B!91))#eWC?$%h}493dHSL z)(b-rOs+dE09TX?8fDPD1NDRJ{PXdz=(DAB!1jea%h+iDV-WK$5MWKRmSFy`LZ!aR zrrY0BmCY?}0zeI_Sw`{jdpi=rvR|w`50d~9SQONc8XBR=W2y&0z<}G6_|9CO`m)H< zUdv{f;-~Jwq)C7!BhGjc((((4p-U@;R=RyGfg$>)$3TI;B=Zi;=f6%qpj?o1}) zNc5;3AdW3Loh=_UV@52n@#6rYByI?aOV|W}U;@yk0oF5?)2;R*+Zc4V(*>F*GK^+f zcvho49?j-PQ#G+nNP`K`E=f~(8IldN@J{yLsBnsPgg};g+?A9rw?c|11fHx!7VIX( zP=Qc5mjHoFjC}||!hpx3GIdvSUamS2O@d0OuYl-=pK3Q7g)-Y z-wO^#Q2DN^vT*%`Z%*8Du_gg9e10LKBJ z5;u7#4nf0{(^7%YGBn5>ErvEU8jO<5<1H07C5DlD$f34#rC!GuMLg@Hx4 z7}sQyLI421;RIPz0NKL9F>vqO69O|8ekIDmc{_QwTuA~bz@>~**I@|xm7eoO(H-*MF~ z(IJzu6_udJ6DW~4*p^yJ)C-n(P%<-HEhyw>#p2iiL{}QR3!#zAV@%?PxtiE=g=Ox7 z&-A35bHE8Hr98_v&D(s2`m)>~A&f9d2F(BO>q`RS5Nfbz#xUq`<1*O1?Z#4jBsy35 z*|K6b2ly|aXiF-+>4OaD0Q|!E)rb2axwx=!kRQA9lRgv+6WDSf9V#pRLh#+M^15W{ zPcz|Xb%E}f^0kXb{!o0_2F^D}WtMQj5}c4fE3Oo)f;PB1coLaI2jyeV`a7Acy zfDSA~)*^CjQlt4QkJ?8bDxhl3qM(!NFW#=yzyU|WbvKVmcCw?Uez}%wYUuQVVid2* z6SzWx=_uWc!=e^P<-kZze8L)19tNBk097+$vw%v;pF+_jI{6KD*f;4Z4kXu`u7q`3 zE<EW>qvF0Q z2k06Wm0>AMC#iVp#1)0Ph_E2W1ckOP#CQc%jHlR}g}s#I{UuL;ViF#u{hu!?{PkTc zm4o*wTi$%_g0(+R3f zK+7+3hx0uoDk6qI%$2DPmjtRVUjNpX5RT&SV|w36c9Iz(62r1;Ma*nd1UJy_IXMC$ zHsrRxu)M2gQOBY%FyKB8`1LRY_e(3TD^qe)EluK_WTn$RODo495DnNtXzk?Pe&(b4fTy)Qd>hcS9z;Ua`>Ue)&s&w%7cZOh4Dnz)s zHsL9zD*~VY2w;ybZofcZq@c8Qo|O9-ir5z>#@@Xk^!rzDveRr%t)QusevV38LWl$GI$$@IjP`FRaSIG~hSv)7MOEL3at9S7JJ8v>JH~ec?BBej#!lex zmKs-gP!HTQcFFip;o7AsxNM$iXS<*$hF9AYTsc4r0UNI?^Pxq9+4AIyGG6n#O7-C+ zW&?6MW634eQ4k|1`-f+6PEo~D>J8TLbv5t%n%Z&+y9Re$QVXOCfdgSXjJ$i!^5v@b zmcbdv*aNJSJs%y~MqDp1hyKMTlbJJ#6D@WOrISBNE2~oradFJ&?_|X<`_0aZ$IY)H z-*@g{);%Hx_=LZ*&IBo9f%byG9c2c4Btow!@3Qzdo+Je5bkETyt|`BMZm=X|I4W6J z{;9aM^}FS&A9o3JSo-1I%mv9dl)IK{P)bopU-8`t)z$OmK6Go+HV6MI^DdNmUmy9hJ+gi|3S92F12gsB11mOkeQ9jDLp3b+)(~o26kL>oqQZ=D)k2p5vfdL z@iELxniav>GW&v?yHA@=)9w+Z3j@*p``5kXv@`|jY_)uG$Zg->!kb_^({T!Z(r!1N zoQ-742u&P9vuyY?hy3KiH=mw^b)$IJ(CTT^Ar!7p{f9C_`bU+|%=rcF90=vCIGDSK zAU68E|MGA0a_wT9olT0^f9D%u3={Nnf=i6a!I}oF#0*XgyUlfQD7bVMKS_+@EbYF6 zZT#frBCnsV^j{D-Xo6U&cGi#A}&j)af6Tm`!a=0y$_ zefW3?`ZFhR)%LDV$b28KP%cALb!G*0+-aS_5O5XzO(wb7SK8e-8pn;@WKPZ!p zu`DKTdJo)`Hl|6P-|`(PKza=npWpU>dEYR>86xfWGjOuPuEg@b+fMLI-Gxq?wEOPG zcP$|c1NYs3h0Z^Z`v*Dcu@|=7e^bWlfye%pPviHE(@tLa9r0zl&TH_&g+GxSbI%ia TWIPX|w^qkXtQvITT&MpBN#KQa literal 0 HcmV?d00001 diff --git a/plot_trait_evolution.html b/plot_trait_evolution.html index d3cb7cc..b4644c3 100644 --- a/plot_trait_evolution.html +++ b/plot_trait_evolution.html @@ -239,6 +239,7 @@

On this page

  • Skulls! find the skull associated with your species:
    • No: 36 anas_krystallinus
    • +
    • No: 35 sanas_rocks
    • No: 31 lux_fermonta
    • No: 18 malika_rocks
    • Session Info
    • @@ -318,8 +319,8 @@

      Plot trait # Plot the results ggplotly(p)
      -
      - +
      +


      @@ -333,6 +334,10 @@

      No: 36 anas_krystallinus

      +
      +

      No: 35 sanas_rocks

      +

      +

      No: 31 lux_fermonta

      diff --git a/search.json b/search.json index 01aa156..f5a439b 100644 --- a/search.json +++ b/search.json @@ -4,14 +4,14 @@ "href": "plot_trait_evolution.html", "title": "Evolutionary lottery of skull and beak morphology", "section": "", - "text": "Beak and skull shapes in birds of prey (“raptors”) are strongly coupled and largely controlled by size.\n\ngif provided by the awesome Jen Bright @MorphobeakGeek!\n\nIn this exercise we will use a github repo to collaboratively collate and simulate evolutionary trajectories for each participants’ species body size using a simple brownian motion evolutionary model. This assumes evolutionary steps to progress comletely at random. You could say:\n\n\n\nEach participant has created and contributed a file specifying the parameters required to simulate and plot their species evolutionary trajectory. We’ve collect all participants’ files in the master repo. Next we need to simulate species trajectories plot them up.\nParticipants will then get to see the skull and beak shape corresponding to their species relative body size!\n\n\n\n\nFirst we load the required packages and create some objects to compile data on trait evolution for each species.\n\nlibrary(dplyr)\nlibrary(ggplot2) #3.5.1\nlibrary(plotly) #4.10.4\nset.seed(1)\n\nt <- 0:100 # generate time vector\ndt <- NULL # generate object to compile time-series data\ncols <- NULL # generate object to compile trendline colours\n\n\n\n\n\nWe’ll use the parameters supplied in your scripts to generate brownian trait evolution trendline for each species.\n\n#getting the file names for everything except the template that has undefined values\nspp.files <- dir(\"params/\")[dir(\"params/\") != \"params_tmpl.R\"]\n\nfor(spp in spp.files){\n # source parameters for each species\n source(file.path(\"params\", spp))\n \n # generate trait evolution time-series and compile plotting data\n dt <- rbind(dt, data.frame(t, \n trait = c(0, rnorm(n = length(t) - 1, sd = sqrt(sig2)) |> cumsum()),\n species = species.name))\n cols <- c(cols, color)\n}\n\n\n\n\nUse the data generated to plot all species.\n\n# Specify the order of species based on the order of colors in cols to stop a mismatch in colours\ndt$species <- factor(dt$species, levels = unique(dt$species))\n\n# Create the ggplot object\np <- ggplot(data = dt, aes(x = t, y = trait, group = species, colour = species)) + \n geom_line() + \n scale_colour_manual(values = cols) \n\n# Plot the results\nggplotly(p)\n\n\n\n\n\n\n\n\n\n\n\nSkulls are organised from largest to smallest. The largest skulls are vulture-like, (e.g. no. 50, the Andean condor Vultur gryphus) and the smallest are falconet-like, (e.g. no. 1 Collared falconet Microhierax caerulescens)\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nsessioninfo::session_info()\n\n─ Session info ───────────────────────────────────────────────────────────────\n setting value\n version R version 4.4.0 (2024-04-24)\n os Ubuntu 22.04.4 LTS\n system x86_64, linux-gnu\n ui X11\n language (EN)\n collate C.UTF-8\n ctype C.UTF-8\n tz UTC\n date 2024-09-11\n pandoc 2.9.2.1 @ /usr/bin/ (via rmarkdown)\n\n─ Packages ───────────────────────────────────────────────────────────────────\n package * version date (UTC) lib source\n cli 3.6.3 2024-06-21 [1] CRAN (R 4.4.0)\n colorspace 2.1-1 2024-07-26 [1] CRAN (R 4.4.0)\n crosstalk 1.2.1 2023-11-23 [1] CRAN (R 4.4.0)\n data.table 1.16.0 2024-08-27 [1] CRAN (R 4.4.0)\n digest 0.6.37 2024-08-19 [1] CRAN (R 4.4.0)\n dplyr * 1.1.4 2023-11-17 [1] any (@1.1.4)\n evaluate 0.24.0 2024-06-10 [1] CRAN (R 4.4.0)\n fansi 1.0.6 2023-12-08 [1] CRAN (R 4.4.0)\n fastmap 1.2.0 2024-05-15 [1] CRAN (R 4.4.0)\n generics 0.1.3 2022-07-05 [1] CRAN (R 4.4.0)\n ggplot2 * 3.5.1 2024-04-23 [1] CRAN (R 4.4.0)\n glue 1.7.0 2024-01-09 [1] CRAN (R 4.4.0)\n gtable 0.3.5 2024-04-22 [1] CRAN (R 4.4.0)\n htmltools 0.5.8.1 2024-04-04 [1] CRAN (R 4.4.0)\n htmlwidgets 1.6.4 2023-12-06 [1] CRAN (R 4.4.0)\n httr 1.4.7 2023-08-15 [1] CRAN (R 4.4.0)\n jsonlite 1.8.8 2023-12-04 [1] CRAN (R 4.4.0)\n knitr 1.48 2024-07-07 [1] CRAN (R 4.4.0)\n labeling 0.4.3 2023-08-29 [1] CRAN (R 4.4.0)\n lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.4.0)\n lifecycle 1.0.4 2023-11-07 [1] CRAN (R 4.4.0)\n magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.4.0)\n munsell 0.5.1 2024-04-01 [1] CRAN (R 4.4.0)\n pillar 1.9.0 2023-03-22 [1] CRAN (R 4.4.0)\n pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.4.0)\n plotly * 4.10.4 2024-01-13 [1] CRAN (R 4.4.0)\n purrr 1.0.2 2023-08-10 [1] CRAN (R 4.4.0)\n R6 2.5.1 2021-08-19 [1] CRAN (R 4.4.0)\n rlang 1.1.4 2024-06-04 [1] CRAN (R 4.4.0)\n rmarkdown 2.28 2024-08-17 [1] CRAN (R 4.4.0)\n scales 1.3.0 2023-11-28 [1] CRAN (R 4.4.0)\n sessioninfo 1.2.2 2021-12-06 [1] any (@1.2.2)\n tibble 3.2.1 2023-03-20 [1] CRAN (R 4.4.0)\n tidyr 1.3.1 2024-01-24 [1] CRAN (R 4.4.0)\n tidyselect 1.2.1 2024-03-11 [1] CRAN (R 4.4.0)\n utf8 1.2.4 2023-10-22 [1] CRAN (R 4.4.0)\n vctrs 0.6.5 2023-12-01 [1] CRAN (R 4.4.0)\n viridisLite 0.4.2 2023-05-02 [1] CRAN (R 4.4.0)\n withr 3.0.1 2024-07-31 [1] CRAN (R 4.4.0)\n xfun 0.47 2024-08-17 [1] CRAN (R 4.4.0)\n yaml 2.3.10 2024-07-26 [1] CRAN (R 4.4.0)\n\n [1] /home/runner/work/_temp/Library\n [2] /opt/R/4.4.0/lib/R/site-library\n [3] /opt/R/4.4.0/lib/R/library\n\n──────────────────────────────────────────────────────────────────────────────" + "text": "Beak and skull shapes in birds of prey (“raptors”) are strongly coupled and largely controlled by size.\n\ngif provided by the awesome Jen Bright @MorphobeakGeek!\n\nIn this exercise we will use a github repo to collaboratively collate and simulate evolutionary trajectories for each participants’ species body size using a simple brownian motion evolutionary model. This assumes evolutionary steps to progress comletely at random. You could say:\n\n\n\nEach participant has created and contributed a file specifying the parameters required to simulate and plot their species evolutionary trajectory. We’ve collect all participants’ files in the master repo. Next we need to simulate species trajectories plot them up.\nParticipants will then get to see the skull and beak shape corresponding to their species relative body size!\n\n\n\n\nFirst we load the required packages and create some objects to compile data on trait evolution for each species.\n\nlibrary(dplyr)\nlibrary(ggplot2) #3.5.1\nlibrary(plotly) #4.10.4\nset.seed(1)\n\nt <- 0:100 # generate time vector\ndt <- NULL # generate object to compile time-series data\ncols <- NULL # generate object to compile trendline colours\n\n\n\n\n\nWe’ll use the parameters supplied in your scripts to generate brownian trait evolution trendline for each species.\n\n#getting the file names for everything except the template that has undefined values\nspp.files <- dir(\"params/\")[dir(\"params/\") != \"params_tmpl.R\"]\n\nfor(spp in spp.files){\n # source parameters for each species\n source(file.path(\"params\", spp))\n \n # generate trait evolution time-series and compile plotting data\n dt <- rbind(dt, data.frame(t, \n trait = c(0, rnorm(n = length(t) - 1, sd = sqrt(sig2)) |> cumsum()),\n species = species.name))\n cols <- c(cols, color)\n}\n\n\n\n\nUse the data generated to plot all species.\n\n# Specify the order of species based on the order of colors in cols to stop a mismatch in colours\ndt$species <- factor(dt$species, levels = unique(dt$species))\n\n# Create the ggplot object\np <- ggplot(data = dt, aes(x = t, y = trait, group = species, colour = species)) + \n geom_line() + \n scale_colour_manual(values = cols) \n\n# Plot the results\nggplotly(p)\n\n\n\n\n\n\n\n\n\n\n\nSkulls are organised from largest to smallest. The largest skulls are vulture-like, (e.g. no. 50, the Andean condor Vultur gryphus) and the smallest are falconet-like, (e.g. no. 1 Collared falconet Microhierax caerulescens)\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nsessioninfo::session_info()\n\n─ Session info ───────────────────────────────────────────────────────────────\n setting value\n version R version 4.4.0 (2024-04-24)\n os Ubuntu 22.04.4 LTS\n system x86_64, linux-gnu\n ui X11\n language (EN)\n collate C.UTF-8\n ctype C.UTF-8\n tz UTC\n date 2024-09-11\n pandoc 2.9.2.1 @ /usr/bin/ (via rmarkdown)\n\n─ Packages ───────────────────────────────────────────────────────────────────\n package * version date (UTC) lib source\n cli 3.6.3 2024-06-21 [1] CRAN (R 4.4.0)\n colorspace 2.1-1 2024-07-26 [1] CRAN (R 4.4.0)\n crosstalk 1.2.1 2023-11-23 [1] CRAN (R 4.4.0)\n data.table 1.16.0 2024-08-27 [1] CRAN (R 4.4.0)\n digest 0.6.37 2024-08-19 [1] CRAN (R 4.4.0)\n dplyr * 1.1.4 2023-11-17 [1] any (@1.1.4)\n evaluate 0.24.0 2024-06-10 [1] CRAN (R 4.4.0)\n fansi 1.0.6 2023-12-08 [1] CRAN (R 4.4.0)\n fastmap 1.2.0 2024-05-15 [1] CRAN (R 4.4.0)\n generics 0.1.3 2022-07-05 [1] CRAN (R 4.4.0)\n ggplot2 * 3.5.1 2024-04-23 [1] CRAN (R 4.4.0)\n glue 1.7.0 2024-01-09 [1] CRAN (R 4.4.0)\n gtable 0.3.5 2024-04-22 [1] CRAN (R 4.4.0)\n htmltools 0.5.8.1 2024-04-04 [1] CRAN (R 4.4.0)\n htmlwidgets 1.6.4 2023-12-06 [1] CRAN (R 4.4.0)\n httr 1.4.7 2023-08-15 [1] CRAN (R 4.4.0)\n jsonlite 1.8.8 2023-12-04 [1] CRAN (R 4.4.0)\n knitr 1.48 2024-07-07 [1] CRAN (R 4.4.0)\n labeling 0.4.3 2023-08-29 [1] CRAN (R 4.4.0)\n lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.4.0)\n lifecycle 1.0.4 2023-11-07 [1] CRAN (R 4.4.0)\n magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.4.0)\n munsell 0.5.1 2024-04-01 [1] CRAN (R 4.4.0)\n pillar 1.9.0 2023-03-22 [1] CRAN (R 4.4.0)\n pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.4.0)\n plotly * 4.10.4 2024-01-13 [1] CRAN (R 4.4.0)\n purrr 1.0.2 2023-08-10 [1] CRAN (R 4.4.0)\n R6 2.5.1 2021-08-19 [1] CRAN (R 4.4.0)\n rlang 1.1.4 2024-06-04 [1] CRAN (R 4.4.0)\n rmarkdown 2.28 2024-08-17 [1] CRAN (R 4.4.0)\n scales 1.3.0 2023-11-28 [1] CRAN (R 4.4.0)\n sessioninfo 1.2.2 2021-12-06 [1] any (@1.2.2)\n tibble 3.2.1 2023-03-20 [1] CRAN (R 4.4.0)\n tidyr 1.3.1 2024-01-24 [1] CRAN (R 4.4.0)\n tidyselect 1.2.1 2024-03-11 [1] CRAN (R 4.4.0)\n utf8 1.2.4 2023-10-22 [1] CRAN (R 4.4.0)\n vctrs 0.6.5 2023-12-01 [1] CRAN (R 4.4.0)\n viridisLite 0.4.2 2023-05-02 [1] CRAN (R 4.4.0)\n withr 3.0.1 2024-07-31 [1] CRAN (R 4.4.0)\n xfun 0.47 2024-08-17 [1] CRAN (R 4.4.0)\n yaml 2.3.10 2024-07-26 [1] CRAN (R 4.4.0)\n\n [1] /home/runner/work/_temp/Library\n [2] /opt/R/4.4.0/lib/R/site-library\n [3] /opt/R/4.4.0/lib/R/library\n\n──────────────────────────────────────────────────────────────────────────────" }, { "objectID": "plot_trait_evolution.html#skulls-find-the-skull-associated-with-your-species", "href": "plot_trait_evolution.html#skulls-find-the-skull-associated-with-your-species", "title": "Evolutionary lottery of skull and beak morphology", "section": "", - "text": "Skulls are organised from largest to smallest. The largest skulls are vulture-like, (e.g. no. 50, the Andean condor Vultur gryphus) and the smallest are falconet-like, (e.g. no. 1 Collared falconet Microhierax caerulescens)\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nsessioninfo::session_info()\n\n─ Session info ───────────────────────────────────────────────────────────────\n setting value\n version R version 4.4.0 (2024-04-24)\n os Ubuntu 22.04.4 LTS\n system x86_64, linux-gnu\n ui X11\n language (EN)\n collate C.UTF-8\n ctype C.UTF-8\n tz UTC\n date 2024-09-11\n pandoc 2.9.2.1 @ /usr/bin/ (via rmarkdown)\n\n─ Packages ───────────────────────────────────────────────────────────────────\n package * version date (UTC) lib source\n cli 3.6.3 2024-06-21 [1] CRAN (R 4.4.0)\n colorspace 2.1-1 2024-07-26 [1] CRAN (R 4.4.0)\n crosstalk 1.2.1 2023-11-23 [1] CRAN (R 4.4.0)\n data.table 1.16.0 2024-08-27 [1] CRAN (R 4.4.0)\n digest 0.6.37 2024-08-19 [1] CRAN (R 4.4.0)\n dplyr * 1.1.4 2023-11-17 [1] any (@1.1.4)\n evaluate 0.24.0 2024-06-10 [1] CRAN (R 4.4.0)\n fansi 1.0.6 2023-12-08 [1] CRAN (R 4.4.0)\n fastmap 1.2.0 2024-05-15 [1] CRAN (R 4.4.0)\n generics 0.1.3 2022-07-05 [1] CRAN (R 4.4.0)\n ggplot2 * 3.5.1 2024-04-23 [1] CRAN (R 4.4.0)\n glue 1.7.0 2024-01-09 [1] CRAN (R 4.4.0)\n gtable 0.3.5 2024-04-22 [1] CRAN (R 4.4.0)\n htmltools 0.5.8.1 2024-04-04 [1] CRAN (R 4.4.0)\n htmlwidgets 1.6.4 2023-12-06 [1] CRAN (R 4.4.0)\n httr 1.4.7 2023-08-15 [1] CRAN (R 4.4.0)\n jsonlite 1.8.8 2023-12-04 [1] CRAN (R 4.4.0)\n knitr 1.48 2024-07-07 [1] CRAN (R 4.4.0)\n labeling 0.4.3 2023-08-29 [1] CRAN (R 4.4.0)\n lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.4.0)\n lifecycle 1.0.4 2023-11-07 [1] CRAN (R 4.4.0)\n magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.4.0)\n munsell 0.5.1 2024-04-01 [1] CRAN (R 4.4.0)\n pillar 1.9.0 2023-03-22 [1] CRAN (R 4.4.0)\n pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.4.0)\n plotly * 4.10.4 2024-01-13 [1] CRAN (R 4.4.0)\n purrr 1.0.2 2023-08-10 [1] CRAN (R 4.4.0)\n R6 2.5.1 2021-08-19 [1] CRAN (R 4.4.0)\n rlang 1.1.4 2024-06-04 [1] CRAN (R 4.4.0)\n rmarkdown 2.28 2024-08-17 [1] CRAN (R 4.4.0)\n scales 1.3.0 2023-11-28 [1] CRAN (R 4.4.0)\n sessioninfo 1.2.2 2021-12-06 [1] any (@1.2.2)\n tibble 3.2.1 2023-03-20 [1] CRAN (R 4.4.0)\n tidyr 1.3.1 2024-01-24 [1] CRAN (R 4.4.0)\n tidyselect 1.2.1 2024-03-11 [1] CRAN (R 4.4.0)\n utf8 1.2.4 2023-10-22 [1] CRAN (R 4.4.0)\n vctrs 0.6.5 2023-12-01 [1] CRAN (R 4.4.0)\n viridisLite 0.4.2 2023-05-02 [1] CRAN (R 4.4.0)\n withr 3.0.1 2024-07-31 [1] CRAN (R 4.4.0)\n xfun 0.47 2024-08-17 [1] CRAN (R 4.4.0)\n yaml 2.3.10 2024-07-26 [1] CRAN (R 4.4.0)\n\n [1] /home/runner/work/_temp/Library\n [2] /opt/R/4.4.0/lib/R/site-library\n [3] /opt/R/4.4.0/lib/R/library\n\n──────────────────────────────────────────────────────────────────────────────" + "text": "Skulls are organised from largest to smallest. The largest skulls are vulture-like, (e.g. no. 50, the Andean condor Vultur gryphus) and the smallest are falconet-like, (e.g. no. 1 Collared falconet Microhierax caerulescens)\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nsessioninfo::session_info()\n\n─ Session info ───────────────────────────────────────────────────────────────\n setting value\n version R version 4.4.0 (2024-04-24)\n os Ubuntu 22.04.4 LTS\n system x86_64, linux-gnu\n ui X11\n language (EN)\n collate C.UTF-8\n ctype C.UTF-8\n tz UTC\n date 2024-09-11\n pandoc 2.9.2.1 @ /usr/bin/ (via rmarkdown)\n\n─ Packages ───────────────────────────────────────────────────────────────────\n package * version date (UTC) lib source\n cli 3.6.3 2024-06-21 [1] CRAN (R 4.4.0)\n colorspace 2.1-1 2024-07-26 [1] CRAN (R 4.4.0)\n crosstalk 1.2.1 2023-11-23 [1] CRAN (R 4.4.0)\n data.table 1.16.0 2024-08-27 [1] CRAN (R 4.4.0)\n digest 0.6.37 2024-08-19 [1] CRAN (R 4.4.0)\n dplyr * 1.1.4 2023-11-17 [1] any (@1.1.4)\n evaluate 0.24.0 2024-06-10 [1] CRAN (R 4.4.0)\n fansi 1.0.6 2023-12-08 [1] CRAN (R 4.4.0)\n fastmap 1.2.0 2024-05-15 [1] CRAN (R 4.4.0)\n generics 0.1.3 2022-07-05 [1] CRAN (R 4.4.0)\n ggplot2 * 3.5.1 2024-04-23 [1] CRAN (R 4.4.0)\n glue 1.7.0 2024-01-09 [1] CRAN (R 4.4.0)\n gtable 0.3.5 2024-04-22 [1] CRAN (R 4.4.0)\n htmltools 0.5.8.1 2024-04-04 [1] CRAN (R 4.4.0)\n htmlwidgets 1.6.4 2023-12-06 [1] CRAN (R 4.4.0)\n httr 1.4.7 2023-08-15 [1] CRAN (R 4.4.0)\n jsonlite 1.8.8 2023-12-04 [1] CRAN (R 4.4.0)\n knitr 1.48 2024-07-07 [1] CRAN (R 4.4.0)\n labeling 0.4.3 2023-08-29 [1] CRAN (R 4.4.0)\n lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.4.0)\n lifecycle 1.0.4 2023-11-07 [1] CRAN (R 4.4.0)\n magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.4.0)\n munsell 0.5.1 2024-04-01 [1] CRAN (R 4.4.0)\n pillar 1.9.0 2023-03-22 [1] CRAN (R 4.4.0)\n pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.4.0)\n plotly * 4.10.4 2024-01-13 [1] CRAN (R 4.4.0)\n purrr 1.0.2 2023-08-10 [1] CRAN (R 4.4.0)\n R6 2.5.1 2021-08-19 [1] CRAN (R 4.4.0)\n rlang 1.1.4 2024-06-04 [1] CRAN (R 4.4.0)\n rmarkdown 2.28 2024-08-17 [1] CRAN (R 4.4.0)\n scales 1.3.0 2023-11-28 [1] CRAN (R 4.4.0)\n sessioninfo 1.2.2 2021-12-06 [1] any (@1.2.2)\n tibble 3.2.1 2023-03-20 [1] CRAN (R 4.4.0)\n tidyr 1.3.1 2024-01-24 [1] CRAN (R 4.4.0)\n tidyselect 1.2.1 2024-03-11 [1] CRAN (R 4.4.0)\n utf8 1.2.4 2023-10-22 [1] CRAN (R 4.4.0)\n vctrs 0.6.5 2023-12-01 [1] CRAN (R 4.4.0)\n viridisLite 0.4.2 2023-05-02 [1] CRAN (R 4.4.0)\n withr 3.0.1 2024-07-31 [1] CRAN (R 4.4.0)\n xfun 0.47 2024-08-17 [1] CRAN (R 4.4.0)\n yaml 2.3.10 2024-07-26 [1] CRAN (R 4.4.0)\n\n [1] /home/runner/work/_temp/Library\n [2] /opt/R/4.4.0/lib/R/site-library\n [3] /opt/R/4.4.0/lib/R/library\n\n──────────────────────────────────────────────────────────────────────────────" }, { "objectID": "clone.html", diff --git a/sitemap.xml b/sitemap.xml index 84c675c..4a5d1fc 100644 --- a/sitemap.xml +++ b/sitemap.xml @@ -2,38 +2,38 @@ https://lmu-osc.github.io/Collaborative-RStudio-GitHub/plot_trait_evolution.html - 2024-09-11T08:31:54.957Z + 2024-09-11T08:32:40.819Z https://lmu-osc.github.io/Collaborative-RStudio-GitHub/clone.html - 2024-09-11T08:31:54.949Z + 2024-09-11T08:32:40.811Z https://lmu-osc.github.io/Collaborative-RStudio-GitHub/pull-request.html - 2024-09-11T08:31:54.957Z + 2024-09-11T08:32:40.819Z https://lmu-osc.github.io/Collaborative-RStudio-GitHub/index.html - 2024-09-11T08:31:54.957Z + 2024-09-11T08:32:40.819Z https://lmu-osc.github.io/Collaborative-RStudio-GitHub/push.html - 2024-09-11T08:31:54.957Z + 2024-09-11T08:32:40.819Z https://lmu-osc.github.io/Collaborative-RStudio-GitHub/fork.html - 2024-09-11T08:31:54.949Z + 2024-09-11T08:32:40.811Z https://lmu-osc.github.io/Collaborative-RStudio-GitHub/merge.html - 2024-09-11T08:31:54.957Z + 2024-09-11T08:32:40.819Z https://lmu-osc.github.io/Collaborative-RStudio-GitHub/commit.html - 2024-09-11T08:31:54.949Z + 2024-09-11T08:32:40.811Z https://lmu-osc.github.io/Collaborative-RStudio-GitHub/pull-upstream.html - 2024-09-11T08:31:54.957Z + 2024-09-11T08:32:40.819Z