-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsines_n_stuff.asv
57 lines (47 loc) · 1.53 KB
/
sines_n_stuff.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
% x = 0:.1:4*pi;
% % d = sin(x);
% x= new_pos_pha{iCell}(:,2)
%
% % d_noise = d + (rand(size(x))-.5)/2;
% % d_noise2 = d + (rand(size(x))-.5);
% figure
% %x has to be phase bins,
% % y has to be counts in bins- so need to bin the data
% y=new_pos_pha{iCell}(:,3)
%% %now you have the shape of the histogram with phase at the bottom
% h=histogram([new_pos_pha{iCell}(:,3); new_pos_pha{iCell}(:,3) + 2*pi],40);
bins=-pi:0.3:pi
h=histogram([new_pos_pha{iCell}(:,3)],bins);
x=h.BinEdges(1:end-1)
y=h.Values
figure;
plot(x,y)
% perhaps I need to dramatically smooth this to get it into just 2 peaks
% num=9
% w = hamming(num)
% m=conv(y,w(1:(end-(num-1))))
% figure;
% plot(x,m)
%ehh nan, probably better off trying to specify that i want the model to
%have 1 cycle
yu = max(y);
yl = min(y);
yr = (yu-yl); % Range of 'y'
yz = y-yu+(yr/2);
zx = x(yz .* circshift(yz,[0 1]) <= 0); % Find zero-crossings
% per = 2*mean(diff(zx)); % Estimate period
%maybe i can make it have a period of around 3.5
per3=pi*2
ym = mean(y); % Estimate offset
% fit = @(b,x) b(1).*(sin(2*pi*x./b(2) + 2*pi/b(3))) + b(4); % Function to fit
fit = @(b,x) b(1).*(sin(2*pi*x./b(2) + 2*pi/b(3))) + b(4); % Function to fit
% Function to fit
fcn = @(b) sum((fit(b,x) - y).^2); % Least-Squares cost function
s = fminsearch(fcn, [yr; per3; -1; ym]);
% s = fminsearch(fcn, [yr; per; -1; ym]);
%%
xp = linspace(min(x),max(x));
figure(1)
clf
plot(x,y,'b', xp,fit(s,xp), 'r')
grid