forked from Holy-Shine/movie_recommend_system
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecInterface.py
163 lines (122 loc) · 5.42 KB
/
recInterface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Recommendation Interface
import torch
from torch.utils.data import DataLoader
from dataset import MovieRankDataset
import numpy as np
import pickle as pkl
def saveMovieAndUserFeature(model):
'''
Save Movie and User feature into HD
'''
batch_size = 256
datasets = MovieRankDataset(pkl_file='data.p',drop_dup=True)
dataloader = DataLoader(datasets, batch_size=batch_size, shuffle=False,num_workers=4)
# format: {id(int) : feature(numpy array)}
user_feature_dict = {}
movie_feature_dict = {}
movies={}
users = {}
with torch.no_grad():
for i_batch, sample_batch in enumerate(dataloader):
user_inputs = sample_batch['user_inputs']
movie_inputs = sample_batch['movie_inputs']
# B x 1 x 200 = 256 x 1 x 200
_, feature_user, feature_movie = model(user_inputs, movie_inputs)
# B x 1 x 200 = 256 x 1 x 200
feature_user = feature_user.cpu().numpy()
feature_movie = feature_movie.cpu().numpy()
for i in range(user_inputs['uid'].shape[0]):
uid = user_inputs['uid'][i] # uid
gender = user_inputs['gender'][i]
age = user_inputs['age'][i]
job = user_inputs['job'][i]
mid = movie_inputs['mid'][i] # mid
mtype = movie_inputs['mtype'][i]
mtext = movie_inputs['mtext'][i]
if uid.item() not in users.keys():
users[uid.item()]={'uid':uid,'gender':gender,'age':age,'job':job}
if mid.item() not in movies.keys():
movies[mid.item()]={'mid':mid,'mtype':mtype, 'mtext':mtext}
if uid.item() not in user_feature_dict.keys():
user_feature_dict[uid.item()]=feature_user[i]
if mid.item() not in movie_feature_dict.keys():
movie_feature_dict[mid.item()]=feature_movie[i]
print('Solved: {} samples'.format((i_batch+1)*batch_size))
feature_data = {'feature_user': user_feature_dict, 'feature_movie':movie_feature_dict}
dict_user_movie={'user': users, 'movie':movies}
print(len(dict_user_movie['user']))
print(len(feature_data['feature_movie']))
pkl.dump(feature_data,open('Params/feature_data.pkl','wb'))
pkl.dump(dict_user_movie, open('Params/user_movie_dict.pkl','wb'))
def getKNNitem(itemID,itemName='movie',K=1):
'''
Use KNN at feature data to get K neighbors
Args:
itemID: target item's id
itemName: 'movie' or 'user'
K: K-neighbors
return:
a list of item ids of which close to itemID
'''
assert K>=1, 'Expect K bigger than 0 but get K<1'
# get cosine similarity between vec1 and vec2
def getCosineSimilarity(vec1, vec2):
cosine_sim = float(vec1.dot(vec2.T).item()) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
return cosine_sim
feature_data = pkl.load(open('Params/feature_data.pkl','rb'))
feature_items = feature_data['feature_'+itemName]
assert itemID in feature_items.keys(), 'Expect item ID exists in dataset, but get None.'
feature_current = feature_items[itemID]
id_sim = [(item_id,getCosineSimilarity(feature_current,vec2)) for item_id,vec2 in feature_items.items()]
id_sim = sorted(id_sim,key=lambda x:x[1],reverse=True)
return [id_sim[i][0] for i in range(K+1)][1:]
def getUserMostLike(uid):
'''
Get user(uid) mostly like movie
feature_user * feature_movie
Args:
model: net model
uid: target user's id
return:
the biggest rank movie id
'''
# user_movie_ids = pkl.load(open('Params/user_movie_dict.pkl','rb'))
#
# assert uid in user_movie_ids['user'], 'Expect user whose id is uid exists, but get None'
#
# movie_dict = user_movie_ids['movie']
# user_dict = user_movie_ids['user']
# user_dict[uid]['uid']=user_dict[uid]['uid'].view(1,1,1)
# user_dict[uid]['gender'] = user_dict[uid]['gender'].view(1,1, 1)
# user_dict[uid]['age'] = user_dict[uid]['age'].view(1,1, 1)
# user_dict[uid]['job'] = user_dict[uid]['uid'].view(1,1, 1)
# mid_rank={}
#
# # Step 1. Go through net to get user_movie score
# with torch.no_grad():
# for mid in movie_dict.keys():
# movie_dict[mid]['mid']=movie_dict[mid]['mid'].view(1,1,1)
# movie_dict[mid]['mtype']=movie_dict[mid]['mtype'].view(1,-1)
# movie_dict[mid]['mtext']=movie_dict[mid]['mtext'].view(1,-1)
# movie_inputs = movie_dict[mid]
# user_inputs = user_dict[uid]
#
# rank, _, _ = model(user_inputs,movie_inputs)
#
# if mid not in mid_rank.keys():
# mid_rank[mid]=rank.item()
feature_data = pkl.load(open('Params/feature_data.pkl', 'rb'))
user_movie_ids = pkl.load(open('Params/user_movie_dict.pkl','rb'))
assert uid in user_movie_ids['user'], \
'Expect user whose id is uid exists, but get None'
feature_user = feature_data['feature_user'][uid]
movie_dict = user_movie_ids['movie']
mid_rank = {}
for mid in movie_dict.keys():
feature_movie=feature_data['feature_movie'][mid]
rank = np.dot(feature_user,feature_movie.T)
if mid not in mid_rank.keys():
mid_rank[mid]=rank.item()
mid_rank = [(mid, rank) for mid, rank in mid_rank.items()]
mids = [mid[0] for mid in sorted(mid_rank, key=lambda x: x[1], reverse=True)]
return mids[0]